![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zltaddlt1le | Structured version Visualization version GIF version |
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.) |
Ref | Expression |
---|---|
zltaddlt1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11594 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | adantr 472 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
3 | elioore 12419 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ) | |
4 | 3 | adantl 473 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
5 | 2, 4 | readdcld 10282 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
6 | 5 | 3adant2 1126 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
7 | zre 11594 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 7 | 3ad2ant2 1129 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑁 ∈ ℝ) |
9 | ltle 10339 | . . 3 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) | |
10 | 6, 8, 9 | syl2anc 696 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) |
11 | elioo3g 12418 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 𝐴 < 1))) | |
12 | simpl 474 | . . . . . 6 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 0 < 𝐴) | |
13 | 11, 12 | simplbiim 661 | . . . . 5 ⊢ (𝐴 ∈ (0(,)1) → 0 < 𝐴) |
14 | 3, 13 | elrpd 12083 | . . . 4 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ+) |
15 | addlelt 12156 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) | |
16 | 1, 7, 14, 15 | syl3an 1164 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
17 | zltp1le 11640 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
18 | 17 | 3adant3 1127 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
19 | 3 | 3ad2ant3 1130 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
20 | 1red 10268 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 1 ∈ ℝ) | |
21 | 1 | 3ad2ant1 1128 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
22 | simpr 479 | . . . . . . . 8 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 𝐴 < 1) | |
23 | 11, 22 | simplbiim 661 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 < 1) |
24 | 23 | 3ad2ant3 1130 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 < 1) |
25 | 19, 20, 21, 24 | ltadd2dd 10409 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) < (𝑀 + 1)) |
26 | peano2z 11631 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
27 | 26 | zred 11695 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ) |
28 | 27 | 3ad2ant1 1128 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 1) ∈ ℝ) |
29 | ltletr 10342 | . . . . . 6 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) | |
30 | 6, 28, 8, 29 | syl3anc 1477 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) |
31 | 25, 30 | mpand 713 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
32 | 18, 31 | sylbid 230 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
33 | 16, 32 | syld 47 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
34 | 10, 33 | impbid 202 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2140 class class class wbr 4805 (class class class)co 6815 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 ℝ*cxr 10286 < clt 10287 ≤ cle 10288 ℤcz 11590 ℝ+crp 12046 (,)cioo 12389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-n0 11506 df-z 11591 df-rp 12047 df-ioo 12393 |
This theorem is referenced by: halfleoddlt 15309 |
Copyright terms: Public domain | W3C validator |