![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zltp1le | Structured version Visualization version GIF version |
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zltp1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1 11084 | . . . 4 ⊢ ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀)) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝑀) ∈ ℕ → 1 ≤ (𝑁 − 𝑀))) |
3 | znnsub 11461 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | |
4 | zre 11419 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
5 | zre 11419 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
6 | 1re 10077 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | leaddsub2 10543 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) | |
8 | 6, 7 | mp3an2 1452 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
9 | 4, 5, 8 | syl2an 493 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑀))) |
10 | 2, 3, 9 | 3imtr4d 283 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → (𝑀 + 1) ≤ 𝑁)) |
11 | 4 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
12 | 11 | ltp1d 10992 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 < (𝑀 + 1)) |
13 | peano2re 10247 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ) | |
14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 1) ∈ ℝ) |
15 | 5 | adantl 481 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
16 | ltletr 10167 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) | |
17 | 11, 14, 15, 16 | syl3anc 1366 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁)) |
18 | 12, 17 | mpand 711 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝑀 < 𝑁)) |
19 | 10, 18 | impbid 202 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 ℝcr 9973 1c1 9975 + caddc 9977 < clt 10112 ≤ cle 10113 − cmin 10304 ℕcn 11058 ℤcz 11415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 |
This theorem is referenced by: zleltp1 11466 zlem1lt 11467 zgt0ge1 11469 nnltp1le 11471 nn0ltp1le 11473 btwnnz 11491 uzind2 11508 fzind 11513 eluzp1l 11750 eluz2b1 11797 zltaddlt1le 12362 fzsplit2 12404 m1modge3gt1 12757 bcval5 13145 seqcoll 13286 hashge2el2dif 13300 hashge2el2difr 13301 swrd2lsw 13741 2swrd2eqwrdeq 13742 isercoll 14442 nn0o1gt2 15144 divalglem6 15168 isprm3 15443 dvdsnprmd 15450 prmgt1 15456 oddprmge3 15459 hashdvds 15527 prmreclem5 15671 prmgaplem3 15804 prmgaplem5 15806 prmgaplem6 15807 prmgaplem8 15809 sylow1lem3 18061 chfacfscmul0 20711 chfacfscmulfsupp 20712 chfacfpmmul0 20715 chfacfpmmulfsupp 20716 dyaddisjlem 23409 plyeq0lem 24011 basellem2 24853 chtub 24982 bposlem9 25062 lgsdilem2 25103 lgsquadlem1 25150 2lgslem1a 25161 pntpbnd1 25320 pntpbnd2 25321 tgldimor 25442 eucrct2eupth 27223 konigsberglem5 27234 nndiffz1 29676 ltesubnnd 29696 dp2ltc 29722 smatrcl 29990 breprexplemc 30838 dnibndlem13 32605 knoppndvlem6 32633 poimirlem3 33542 poimirlem4 33543 poimirlem15 33554 poimirlem17 33556 poimirlem28 33567 ellz1 37647 lzunuz 37648 rmygeid 37848 jm3.1lem2 37902 bccbc 38861 elfzop1le2 39816 monoords 39825 fmul01lt1lem1 40134 dvnxpaek 40475 iblspltprt 40507 itgspltprt 40513 fourierdlem6 40648 fourierdlem12 40654 fourierdlem19 40661 fourierdlem42 40684 fourierdlem48 40689 fourierdlem49 40690 fourierdlem79 40720 iccpartiltu 41683 iccpartgt 41688 icceuelpartlem 41696 iccpartnel 41699 lighneallem4b 41851 evenltle 41951 gbowge7 41976 gbege6 41978 stgoldbwt 41989 sbgoldbwt 41990 sbgoldbalt 41994 sbgoldbm 41997 bgoldbtbndlem1 42018 tgblthelfgott 42028 tgblthelfgottOLD 42034 elfzolborelfzop1 42634 |
Copyright terms: Public domain | W3C validator |