MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zltp1le Structured version   Visualization version   GIF version

Theorem zltp1le 11260
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zltp1le ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))

Proof of Theorem zltp1le
StepHypRef Expression
1 nnge1 10893 . . . 4 ((𝑁𝑀) ∈ ℕ → 1 ≤ (𝑁𝑀))
21a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝑀) ∈ ℕ → 1 ≤ (𝑁𝑀)))
3 znnsub 11256 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
4 zre 11214 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 11214 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 1re 9895 . . . . 5 1 ∈ ℝ
7 leaddsub2 10354 . . . . 5 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁𝑀)))
86, 7mp3an2 1403 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁𝑀)))
94, 5, 8syl2an 492 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁𝑀)))
102, 3, 93imtr4d 281 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → (𝑀 + 1) ≤ 𝑁))
114adantr 479 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1211ltp1d 10803 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 < (𝑀 + 1))
13 peano2re 10060 . . . . 5 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
1411, 13syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 1) ∈ ℝ)
155adantl 480 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
16 ltletr 9980 . . . 4 ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁))
1711, 14, 15, 16syl3anc 1317 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁))
1812, 17mpand 706 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁𝑀 < 𝑁))
1910, 18impbid 200 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wcel 1976   class class class wbr 4577  (class class class)co 6527  cr 9791  1c1 9793   + caddc 9795   < clt 9930  cle 9931  cmin 10117  cn 10867  cz 11210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211
This theorem is referenced by:  zleltp1  11261  zlem1lt  11262  zgt0ge1  11264  nnltp1le  11266  nn0ltp1le  11268  btwnnz  11285  uzind2  11302  fzind  11307  eluzp1l  11544  eluz2b1  11591  zltaddlt1le  12151  fzsplit2  12192  m1modge3gt1  12534  bcval5  12922  seqcoll  13057  hashge2el2dif  13067  hashge2el2difr  13068  swrd2lsw  13489  2swrd2eqwrdeq  13490  isercoll  14192  nn0o1gt2  14881  divalglem6  14905  isprm3  15180  dvdsnprmd  15187  prmgt1  15193  oddprmge3  15196  hashdvds  15264  prmreclem5  15408  prmgaplem3  15541  prmgaplem5  15543  prmgaplem6  15544  prmgaplem8  15546  sylow1lem3  17784  chfacfscmul0  20424  chfacfscmulfsupp  20425  chfacfpmmul0  20428  chfacfpmmulfsupp  20429  dyaddisjlem  23086  plyeq0lem  23687  basellem2  24525  chtub  24654  bposlem9  24734  lgsdilem2  24775  lgsquadlem1  24822  2lgslem1a  24833  pntpbnd1  24992  pntpbnd2  24993  tgldimor  25114  numclwwlkovf2ex  26379  nndiffz1  28742  ltesubnnd  28761  smatrcl  28996  dnibndlem13  31456  knoppndvlem6  31484  poimirlem3  32378  poimirlem4  32379  poimirlem15  32390  poimirlem17  32392  poimirlem28  32403  ellz1  36144  lzunuz  36145  rmygeid  36345  jm3.1lem2  36399  bccbc  37362  elfzop1le2  38239  monoords  38248  fmul01lt1lem1  38448  dvnxpaek  38629  iblspltprt  38662  itgspltprt  38668  fourierdlem6  38803  fourierdlem12  38809  fourierdlem19  38816  fourierdlem42  38839  fourierdlem48  38844  fourierdlem49  38845  fourierdlem79  38875  iccpartiltu  39758  iccpartgt  39763  icceuelpartlem  39771  iccpartnel  39774  lighneallem4b  39862  gboge7  39983  gbege6  39985  stgoldbwt  39996  bgoldbwt  39997  sgoldbalt  40001  bgoldbtbndlem1  40019  tgblthelfgott  40027  tgblthelfgottOLD  40034  eucrct2eupth  41408  konigsberglem5  41421  av-numclwwlkovf2ex  41512  elfzolborelfzop1  42098
  Copyright terms: Public domain W3C validator