Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zm1nn Structured version   Visualization version   GIF version

Theorem zm1nn 41844
Description: An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018.)
Assertion
Ref Expression
zm1nn ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))

Proof of Theorem zm1nn
StepHypRef Expression
1 0red 10253 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 0 ∈ ℝ)
2 simpl 474 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐽 ∈ ℝ)
3 zre 11593 . . . . . . . . . 10 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4 nn0re 11513 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5 resubcl 10557 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿𝑁) ∈ ℝ)
63, 4, 5syl2anr 496 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿𝑁) ∈ ℝ)
76adantl 473 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐿𝑁) ∈ ℝ)
8 peano2rem 10560 . . . . . . . 8 ((𝐿𝑁) ∈ ℝ → ((𝐿𝑁) − 1) ∈ ℝ)
97, 8syl 17 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝐿𝑁) − 1) ∈ ℝ)
10 lelttr 10340 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ ((𝐿𝑁) − 1) ∈ ℝ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
111, 2, 9, 10syl3anc 1477 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
12 1red 10267 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 1 ∈ ℝ)
1312, 6posdifd 10826 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) ↔ 0 < ((𝐿𝑁) − 1)))
144adantr 472 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
153adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1612, 14, 15ltaddsubd 10839 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 ↔ 1 < (𝐿𝑁)))
17 elnn0z 11602 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
18 0red 10253 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
19 zre 11593 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019adantr 472 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
21 1red 10267 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 1 ∈ ℝ)
2218, 20, 21leadd2d 10834 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 ↔ (1 + 0) ≤ (1 + 𝑁)))
23 1re 10251 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
24 0re 10252 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
2523, 24readdcli 10265 . . . . . . . . . . . . . . . . 17 (1 + 0) ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 0) ∈ ℝ)
27 1red 10267 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 1 ∈ ℝ)
2827, 19readdcld 10281 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (1 + 𝑁) ∈ ℝ)
2928adantr 472 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 𝑁) ∈ ℝ)
303adantl 473 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
31 lelttr 10340 . . . . . . . . . . . . . . . 16 (((1 + 0) ∈ ℝ ∧ (1 + 𝑁) ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
3226, 29, 30, 31syl3anc 1477 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
33 peano2zm 11632 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (𝐿 − 1) ∈ ℤ)
3433adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℤ)
3534adantr 472 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℤ)
36 1red 10267 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 1 ∈ ℝ)
37 0red 10253 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3836, 37, 3ltaddsub2d 10840 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 ↔ 0 < (𝐿 − 1)))
3938biimpd 219 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4039adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4140imp 444 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → 0 < (𝐿 − 1))
42 elnnz 11599 . . . . . . . . . . . . . . . . 17 ((𝐿 − 1) ∈ ℕ ↔ ((𝐿 − 1) ∈ ℤ ∧ 0 < (𝐿 − 1)))
4335, 41, 42sylanbrc 701 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℕ)
4443ex 449 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → (𝐿 − 1) ∈ ℕ))
4532, 44syld 47 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (𝐿 − 1) ∈ ℕ))
4645expd 451 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) ≤ (1 + 𝑁) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4722, 46sylbid 230 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4847impancom 455 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4917, 48sylbi 207 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
5049imp 444 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ))
5116, 50sylbird 250 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) → (𝐿 − 1) ∈ ℕ))
5213, 51sylbird 250 . . . . . . 7 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5352adantl 473 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5411, 53syld 47 . . . . 5 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
5554ex 449 . . . 4 (𝐽 ∈ ℝ → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ)))
5655com23 86 . . 3 (𝐽 ∈ ℝ → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)))
57563impib 1109 . 2 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ))
5857com12 32 1 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wcel 2139   class class class wbr 4804  (class class class)co 6814  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   < clt 10286  cle 10287  cmin 10478  cn 11232  0cn0 11504  cz 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator