MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmin Structured version   Visualization version   GIF version

Theorem zmin 12343
Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
zmin (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmin
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnssz 12001 . . . . . 6 ℕ ⊆ ℤ
2 arch 11893 . . . . . 6 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧)
3 ssrexv 4033 . . . . . 6 (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧))
41, 2, 3mpsyl 68 . . . . 5 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)
5 zre 11984 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
6 ltle 10728 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧𝐴𝑧))
75, 6sylan2 594 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧𝐴𝑧))
87reximdva 3274 . . . . 5 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴𝑧))
94, 8mpd 15 . . . 4 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴𝑧)
10 rabn0 4338 . . . 4 ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴𝑧)
119, 10sylibr 236 . . 3 (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)
12 breq2 5069 . . . . . 6 (𝑧 = 𝑛 → (𝐴𝑧𝐴𝑛))
1312cbvrabv 3491 . . . . 5 {𝑧 ∈ ℤ ∣ 𝐴𝑧} = {𝑛 ∈ ℤ ∣ 𝐴𝑛}
1413eqimssi 4024 . . . 4 {𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛}
15 uzwo3 12342 . . . 4 ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1614, 15mpanr1 701 . . 3 ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1711, 16mpdan 685 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
18 breq2 5069 . . . . . . 7 (𝑧 = 𝑥 → (𝐴𝑧𝐴𝑥))
1918elrab 3679 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴𝑥))
20 breq2 5069 . . . . . . 7 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
2120ralrab 3684 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))
2219, 21anbi12i 628 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
23 anass 471 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2422, 23bitri 277 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2524eubii 2666 . . 3 (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
26 df-reu 3145 . . 3 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦))
27 df-reu 3145 . . 3 (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2825, 26, 273bitr4i 305 . 2 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2917, 28sylib 220 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  ∃!weu 2649  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  wss 3935  c0 4290   class class class wbr 5065  cr 10535   < clt 10674  cle 10675  cn 11637  cz 11980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243
This theorem is referenced by:  zmax  12344  zbtwnre  12345
  Copyright terms: Public domain W3C validator