MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmin Structured version   Visualization version   GIF version

Theorem zmin 11977
Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
zmin (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmin
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnssz 11589 . . . . . 6 ℕ ⊆ ℤ
2 arch 11481 . . . . . 6 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐴 < 𝑧)
3 ssrexv 3808 . . . . . 6 (ℕ ⊆ ℤ → (∃𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴 < 𝑧))
41, 2, 3mpsyl 68 . . . . 5 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴 < 𝑧)
5 zre 11573 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
6 ltle 10318 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 < 𝑧𝐴𝑧))
75, 6sylan2 492 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝐴 < 𝑧𝐴𝑧))
87reximdva 3155 . . . . 5 (𝐴 ∈ ℝ → (∃𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃𝑧 ∈ ℤ 𝐴𝑧))
94, 8mpd 15 . . . 4 (𝐴 ∈ ℝ → ∃𝑧 ∈ ℤ 𝐴𝑧)
10 rabn0 4101 . . . 4 ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅ ↔ ∃𝑧 ∈ ℤ 𝐴𝑧)
119, 10sylibr 224 . . 3 (𝐴 ∈ ℝ → {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)
12 breq2 4808 . . . . . 6 (𝑧 = 𝑛 → (𝐴𝑧𝐴𝑛))
1312cbvrabv 3339 . . . . 5 {𝑧 ∈ ℤ ∣ 𝐴𝑧} = {𝑛 ∈ ℤ ∣ 𝐴𝑛}
1413eqimssi 3800 . . . 4 {𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛}
15 uzwo3 11976 . . . 4 ((𝐴 ∈ ℝ ∧ ({𝑧 ∈ ℤ ∣ 𝐴𝑧} ⊆ {𝑛 ∈ ℤ ∣ 𝐴𝑛} ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅)) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1614, 15mpanr1 721 . . 3 ((𝐴 ∈ ℝ ∧ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ≠ ∅) → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
1711, 16mpdan 705 . 2 (𝐴 ∈ ℝ → ∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦)
18 breq2 4808 . . . . . . 7 (𝑧 = 𝑥 → (𝐴𝑧𝐴𝑥))
1918elrab 3504 . . . . . 6 (𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ↔ (𝑥 ∈ ℤ ∧ 𝐴𝑥))
20 breq2 4808 . . . . . . 7 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
2120ralrab 3509 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))
2219, 21anbi12i 735 . . . . 5 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
23 anass 684 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝐴𝑥) ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2422, 23bitri 264 . . . 4 ((𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ (𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2524eubii 2629 . . 3 (∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
26 df-reu 3057 . . 3 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥(𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦))
27 df-reu 3057 . . 3 (∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦))))
2825, 26, 273bitr4i 292 . 2 (∃!𝑥 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝐴𝑧}𝑥𝑦 ↔ ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
2917, 28sylib 208 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴𝑦𝑥𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139  ∃!weu 2607  wne 2932  wral 3050  wrex 3051  ∃!wreu 3052  {crab 3054  wss 3715  c0 4058   class class class wbr 4804  cr 10127   < clt 10266  cle 10267  cn 11212  cz 11569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880
This theorem is referenced by:  zmax  11978  zbtwnre  11979
  Copyright terms: Public domain W3C validator