MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zndvds Structured version   Visualization version   GIF version

Theorem zndvds 19989
Description: Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
zndvds.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
zndvds ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem zndvds
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2699 . 2 ((𝐿𝐴) = (𝐿𝐵) ↔ (𝐿𝐵) = (𝐿𝐴))
2 eqid 2692 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2692 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
4 zncyg.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
5 zndvds.2 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
62, 3, 4, 5znzrhval 19986 . . . . 5 ((𝑁 ∈ ℕ0𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
763adant2 1123 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
82, 3, 4, 5znzrhval 19986 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
983adant3 1124 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
107, 9eqeq12d 2707 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
11 zringring 19912 . . . . . 6 ring ∈ Ring
12 nn0z 11481 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13123ad2ant1 1125 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℤ)
1413snssd 4416 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑁} ⊆ ℤ)
15 zringbas 19915 . . . . . . . 8 ℤ = (Base‘ℤring)
16 eqid 2692 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
172, 15, 16rspcl 19313 . . . . . . 7 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1811, 14, 17sylancr 698 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1916lidlsubg 19306 . . . . . 6 ((ℤring ∈ Ring ∧ ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring)) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2011, 18, 19sylancr 698 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2115, 3eqger 17734 . . . . 5 (((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
2220, 21syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
23 simp3 1130 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
2422, 23erth 7877 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
25 zringabl 19913 . . . . 5 ring ∈ Abel
2615, 16lidlss 19301 . . . . . 6 (((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
2718, 26syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
28 eqid 2692 . . . . . 6 (-g‘ℤring) = (-g‘ℤring)
2915, 28, 3eqgabl 18329 . . . . 5 ((ℤring ∈ Abel ∧ ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
3025, 27, 29sylancr 698 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
31 simp2 1129 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
3223, 31jca 555 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
3332biantrurd 530 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
34 df-3an 1074 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})))
3533, 34syl6bbr 278 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
36 zsubrg 19890 . . . . . . . . 9 ℤ ∈ (SubRing‘ℂfld)
37 subrgsubg 18877 . . . . . . . . 9 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3836, 37mp1i 13 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ℤ ∈ (SubGrp‘ℂfld))
39 cnfldsub 19865 . . . . . . . . 9 − = (-g‘ℂfld)
40 df-zring 19910 . . . . . . . . 9 ring = (ℂflds ℤ)
4139, 40, 28subgsub 17696 . . . . . . . 8 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4238, 41syld3an1 1453 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4342eqcomd 2698 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(-g‘ℤring)𝐵) = (𝐴𝐵))
44 dvdsrzring 19922 . . . . . . . 8 ∥ = (∥r‘ℤring)
4515, 2, 44rspsn 19345 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑁 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4611, 13, 45sylancr 698 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4743, 46eleq12d 2765 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐴𝐵) ∈ {𝑥𝑁𝑥}))
48 ovex 6761 . . . . . 6 (𝐴𝐵) ∈ V
49 breq2 4732 . . . . . 6 (𝑥 = (𝐴𝐵) → (𝑁𝑥𝑁 ∥ (𝐴𝐵)))
5048, 49elab 3423 . . . . 5 ((𝐴𝐵) ∈ {𝑥𝑁𝑥} ↔ 𝑁 ∥ (𝐴𝐵))
5147, 50syl6bb 276 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ 𝑁 ∥ (𝐴𝐵)))
5230, 35, 513bitr2d 296 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴𝑁 ∥ (𝐴𝐵)))
5310, 24, 523bitr2d 296 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ 𝑁 ∥ (𝐴𝐵)))
541, 53syl5bb 272 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1564  wcel 2071  {cab 2678  wss 3648  {csn 4253   class class class wbr 4728  cfv 5969  (class class class)co 6733   Er wer 7827  [cec 7828  cmin 10347  0cn0 11373  cz 11458  cdvds 15071  -gcsg 17514  SubGrpcsubg 17678   ~QG cqg 17680  Abelcabl 18283  Ringcrg 18636  SubRingcsubrg 18867  LIdealclidl 19261  RSpancrsp 19262  fldccnfld 19837  ringzring 19909  ℤRHomczrh 19939  ℤ/nczn 19942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-inf2 8619  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-addf 10096  ax-mulf 10097
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-1st 7253  df-2nd 7254  df-tpos 7440  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-1o 7648  df-oadd 7652  df-er 7830  df-ec 7832  df-qs 7836  df-map 7944  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044  df-sup 8432  df-inf 8433  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-nn 11102  df-2 11160  df-3 11161  df-4 11162  df-5 11163  df-6 11164  df-7 11165  df-8 11166  df-9 11167  df-n0 11374  df-z 11459  df-dec 11575  df-uz 11769  df-fz 12409  df-seq 12885  df-dvds 15072  df-struct 15950  df-ndx 15951  df-slot 15952  df-base 15954  df-sets 15955  df-ress 15956  df-plusg 16045  df-mulr 16046  df-starv 16047  df-sca 16048  df-vsca 16049  df-ip 16050  df-tset 16051  df-ple 16052  df-ds 16055  df-unif 16056  df-0g 16193  df-imas 16259  df-qus 16260  df-mgm 17332  df-sgrp 17374  df-mnd 17385  df-mhm 17425  df-grp 17515  df-minusg 17516  df-sbg 17517  df-mulg 17631  df-subg 17681  df-nsg 17682  df-eqg 17683  df-ghm 17748  df-cmn 18284  df-abl 18285  df-mgp 18579  df-ur 18591  df-ring 18638  df-cring 18639  df-oppr 18712  df-dvdsr 18730  df-rnghom 18806  df-subrg 18869  df-lmod 18956  df-lss 19024  df-lsp 19063  df-sra 19263  df-rgmod 19264  df-lidl 19265  df-rsp 19266  df-2idl 19323  df-cnfld 19838  df-zring 19910  df-zrh 19943  df-zn 19946
This theorem is referenced by:  zndvds0  19990  znf1o  19991  znunit  20003  cygznlem1  20006  lgsqrlem1  25159  lgsqrlem2  25160  lgsqrlem4  25162  lgsdchrval  25167  lgseisenlem3  25190  lgseisenlem4  25191  dchrisumlem1  25266  dirith  25306
  Copyright terms: Public domain W3C validator