MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znle2 Structured version   Visualization version   GIF version

Theorem znle2 19816
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
Assertion
Ref Expression
znle2 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))

Proof of Theorem znle2
StepHypRef Expression
1 eqid 2626 . . 3 (RSpan‘ℤring) = (RSpan‘ℤring)
2 eqid 2626 . . 3 (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
3 znle2.y . . 3 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2626 . . 3 ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)
5 znle2.w . . 3 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
6 znle2.l . . 3 = (le‘𝑌)
71, 2, 3, 4, 5, 6znle 19798 . 2 (𝑁 ∈ ℕ0 = ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)))
81, 2, 3znzrh 19805 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) = (ℤRHom‘𝑌))
98reseq1d 5359 . . . . 5 (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = ((ℤRHom‘𝑌) ↾ 𝑊))
10 znle2.f . . . . 5 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
119, 10syl6eqr 2678 . . . 4 (𝑁 ∈ ℕ0 → ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹)
1211coeq1d 5248 . . 3 (𝑁 ∈ ℕ0 → (((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) = (𝐹 ∘ ≤ ))
1311cnveqd 5263 . . 3 (𝑁 ∈ ℕ0((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) = 𝐹)
1412, 13coeq12d 5251 . 2 (𝑁 ∈ ℕ0 → ((((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊) ∘ ≤ ) ∘ ((ℤRHom‘(ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))) ↾ 𝑊)) = ((𝐹 ∘ ≤ ) ∘ 𝐹))
157, 14eqtrd 2660 1 (𝑁 ∈ ℕ0 = ((𝐹 ∘ ≤ ) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1992  ifcif 4063  {csn 4153  ccnv 5078  cres 5081  ccom 5083  cfv 5850  (class class class)co 6605  0cc0 9881  cle 10020  0cn0 11237  cz 11322  ..^cfzo 12403  lecple 15864   /s cqus 16081   ~QG cqg 17506  RSpancrsp 19085  ringzring 19732  ℤRHomczrh 19762  ℤ/nczn 19765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-fz 12266  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-mhm 17251  df-grp 17341  df-minusg 17342  df-subg 17507  df-ghm 17574  df-cmn 18111  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-rnghom 18631  df-subrg 18694  df-cnfld 19661  df-zring 19733  df-zrh 19766  df-zn 19769
This theorem is referenced by:  znleval  19817
  Copyright terms: Public domain W3C validator