MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnenlem Structured version   Visualization version   GIF version

Theorem znnenlem 14728
Description: Lemma for znnen 14729. (Contributed by NM, 31-Jul-2004.)
Assertion
Ref Expression
znnenlem (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1)))

Proof of Theorem znnenlem
StepHypRef Expression
1 zre 11217 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
2 zre 11217 . . . . 5 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
3 0re 9897 . . . . . . . . . . . 12 0 ∈ ℝ
4 ltnle 9969 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦))
53, 4mpan2 702 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦))
65adantr 479 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦))
76anbi1d 736 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) ↔ (¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥)))
8 ltletr 9981 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥))
93, 8mp3an2 1403 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥))
107, 9sylbird 248 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥))
1110ancoms 467 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥))
1211ancomsd 468 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑦 < 𝑥))
13 ltne 9986 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥𝑦)
1413ex 448 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 < 𝑥𝑥𝑦))
1514adantl 480 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥𝑥𝑦))
1612, 15syld 45 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥𝑦))
171, 2, 16syl2an 492 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥𝑦))
1817impcom 444 . . 3 (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥𝑦)
19 znegcl 11248 . . . . . 6 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
20 zneo 11295 . . . . . 6 ((𝑥 ∈ ℤ ∧ -𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1))
2119, 20sylan2 489 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1))
22 2cn 10941 . . . . . . . 8 2 ∈ ℂ
23 zcn 11218 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
24 mulneg12 10320 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-2 · 𝑦) = (2 · -𝑦))
2522, 23, 24sylancr 693 . . . . . . 7 (𝑦 ∈ ℤ → (-2 · 𝑦) = (2 · -𝑦))
2625adantl 480 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-2 · 𝑦) = (2 · -𝑦))
2726oveq1d 6542 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-2 · 𝑦) + 1) = ((2 · -𝑦) + 1))
2821, 27neeqtrrd 2855 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1))
2928adantl 480 . . 3 (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1))
3018, 292thd 253 . 2 (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥𝑦 ↔ (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)))
3130necon4bid 2826 1 (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  (class class class)co 6527  cc 9791  cr 9792  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798   < clt 9931  cle 9932  -cneg 10119  2c2 10920  cz 11213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-n0 11143  df-z 11214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator