MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunithash Structured version   Visualization version   GIF version

Theorem znunithash 20639
Description: The size of the unit group of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
Assertion
Ref Expression
znunithash (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))

Proof of Theorem znunithash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfphi2 16099 . 2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2 nnnn0 11892 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 znchr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2818 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2818 . . . . . . . . . 10 ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
6 eqid 2818 . . . . . . . . . 10 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
73, 4, 5, 6znf1o 20626 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
82, 7syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
9 nnne0 11659 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
10 ifnefalse 4475 . . . . . . . . 9 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
11 reseq2 5841 . . . . . . . . . . 11 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)))
12 f1oeq1 6597 . . . . . . . . . . 11 (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
1311, 12syl 17 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
14 f1oeq2 6598 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
1513, 14bitrd 280 . . . . . . . . 9 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
169, 10, 153syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
178, 16mpbid 233 . . . . . . 7 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))
18 f1ofn 6609 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁))
19 elpreima 6820 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁) → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
2017, 18, 193syl 18 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
21 fvres 6682 . . . . . . . . . 10 (𝑥 ∈ (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2221adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2322eleq1d 2894 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ ((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈))
24 elfzoelz 13026 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
25 znunit.u . . . . . . . . . 10 𝑈 = (Unit‘𝑌)
26 eqid 2818 . . . . . . . . . 10 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
273, 25, 26znunit 20638 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
282, 24, 27syl2an 595 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
2923, 28bitrd 280 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
3029pm5.32da 579 . . . . . 6 (𝑁 ∈ ℕ → ((𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3120, 30bitrd 280 . . . . 5 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3231abbi2dv 2947 . . . 4 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)})
33 df-rab 3144 . . . 4 {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)}
3432, 33syl6eqr 2871 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
3534fveq2d 6667 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
36 f1ocnv 6620 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁))
37 f1of1 6607 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
3817, 36, 373syl 18 . . . 4 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
39 ovexd 7180 . . . 4 (𝑁 ∈ ℕ → (0..^𝑁) ∈ V)
404, 25unitss 19339 . . . . 5 𝑈 ⊆ (Base‘𝑌)
4140a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ⊆ (Base‘𝑌))
4225fvexi 6677 . . . . 5 𝑈 ∈ V
4342a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ∈ V)
44 f1imaen2g 8558 . . . 4 (((((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁) ∧ (0..^𝑁) ∈ V) ∧ (𝑈 ⊆ (Base‘𝑌) ∧ 𝑈 ∈ V)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
4538, 39, 41, 43, 44syl22anc 834 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
46 hasheni 13696 . . 3 ((((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈 → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
4745, 46syl 17 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
481, 35, 473eqtr2rd 2860 1 (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  {cab 2796  wne 3013  {crab 3139  Vcvv 3492  wss 3933  ifcif 4463   class class class wbr 5057  ccnv 5547  cres 5550  cima 5551   Fn wfn 6343  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  cen 8494  0cc0 10525  1c1 10526  cn 11626  0cn0 11885  cz 11969  ..^cfzo 13021  chash 13678   gcd cgcd 15831  ϕcphi 16089  Basecbs 16471  Unitcui 19318  ℤRHomczrh 20575  ℤ/nczn 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-gcd 15832  df-phi 16091  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-imas 16769  df-qus 16770  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-nsg 18215  df-eqg 18216  df-ghm 18294  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-rnghom 19396  df-subrg 19462  df-lmod 19565  df-lss 19633  df-lsp 19673  df-sra 19873  df-rgmod 19874  df-lidl 19875  df-rsp 19876  df-2idl 19933  df-cnfld 20474  df-zring 20546  df-zrh 20579  df-zn 20582
This theorem is referenced by:  dchrfi  25758  dchrsum2  25771
  Copyright terms: Public domain W3C validator