MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrh2 Structured version   Visualization version   GIF version

Theorem znzrh2 19834
Description: The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znzrh2.s 𝑆 = (RSpan‘ℤring)
znzrh2.r = (ℤring ~QG (𝑆‘{𝑁}))
znzrh2.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrh2.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrh2 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Distinct variable groups:   𝑥,𝑁   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝐿(𝑥)   𝑌(𝑥)

Proof of Theorem znzrh2
StepHypRef Expression
1 znzrh2.2 . 2 𝐿 = (ℤRHom‘𝑌)
2 zringring 19761 . . . . 5 ring ∈ Ring
3 nn0z 11360 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 znzrh2.s . . . . . . 7 𝑆 = (RSpan‘ℤring)
54znlidl 19821 . . . . . 6 (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
63, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
7 znzrh2.r . . . . . . 7 = (ℤring ~QG (𝑆‘{𝑁}))
87oveq2i 6626 . . . . . 6 (ℤring /s ) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
9 zringcrng 19760 . . . . . . 7 ring ∈ CRing
10 eqid 2621 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
1110crng2idl 19179 . . . . . . 7 (ℤring ∈ CRing → (LIdeal‘ℤring) = (2Ideal‘ℤring))
129, 11ax-mp 5 . . . . . 6 (LIdeal‘ℤring) = (2Ideal‘ℤring)
13 zringbas 19764 . . . . . 6 ℤ = (Base‘ℤring)
14 eceq2 7744 . . . . . . . 8 ( = (ℤring ~QG (𝑆‘{𝑁})) → [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁})))
157, 14ax-mp 5 . . . . . . 7 [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁}))
1615mpteq2i 4711 . . . . . 6 (𝑥 ∈ ℤ ↦ [𝑥] ) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG (𝑆‘{𝑁})))
178, 12, 13, 16qusrhm 19177 . . . . 5 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
182, 6, 17sylancr 694 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
194, 8zncrng2 19822 . . . . 5 (𝑁 ∈ ℤ → (ℤring /s ) ∈ CRing)
20 crngring 18498 . . . . 5 ((ℤring /s ) ∈ CRing → (ℤring /s ) ∈ Ring)
21 eqid 2621 . . . . . 6 (ℤRHom‘(ℤring /s )) = (ℤRHom‘(ℤring /s ))
2221zrhrhmb 19799 . . . . 5 ((ℤring /s ) ∈ Ring → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
233, 19, 20, 224syl 19 . . . 4 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
2418, 23mpbid 222 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s )))
25 znzrh2.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
264, 8, 25znzrh 19831 . . 3 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s )) = (ℤRHom‘𝑌))
2724, 26eqtr2d 2656 . 2 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑥 ∈ ℤ ↦ [𝑥] ))
281, 27syl5eq 2667 1 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  {csn 4155  cmpt 4683  cfv 5857  (class class class)co 6615  [cec 7700  0cn0 11252  cz 11337   /s cqus 16105   ~QG cqg 17530  Ringcrg 18487  CRingccrg 18488   RingHom crh 18652  LIdealclidl 19110  RSpancrsp 19111  2Idealc2idl 19171  ringzring 19758  ℤRHomczrh 19788  ℤ/nczn 19791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-seq 12758  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-0g 16042  df-imas 16108  df-qus 16109  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-mhm 17275  df-grp 17365  df-minusg 17366  df-sbg 17367  df-mulg 17481  df-subg 17531  df-nsg 17532  df-eqg 17533  df-ghm 17598  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-oppr 18563  df-rnghom 18655  df-subrg 18718  df-lmod 18805  df-lss 18873  df-lsp 18912  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-rsp 19115  df-2idl 19172  df-cnfld 19687  df-zring 19759  df-zrh 19792  df-zn 19795
This theorem is referenced by:  znzrhval  19835  znzrhfo  19836
  Copyright terms: Public domain W3C validator