Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrhfo Structured version   Visualization version   GIF version

Theorem znzrhfo 19824
 Description: The ℤ ring homomorphism is a surjection onto ℤ / 𝑛ℤ. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
znzrhfo.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrhfo.b 𝐵 = (Base‘𝑌)
znzrhfo.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrhfo (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)

Proof of Theorem znzrhfo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2622 . . . 4 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
2 zringbas 19752 . . . . 5 ℤ = (Base‘ℤring)
32a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤ = (Base‘ℤring))
4 eqid 2621 . . . 4 (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
5 ovex 6638 . . . . 5 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) ∈ V
65a1i 11 . . . 4 (𝑁 ∈ ℕ0 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) ∈ V)
7 zringring 19749 . . . . 5 ring ∈ Ring
87a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤring ∈ Ring)
91, 3, 4, 6, 8quslem 16131 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
10 eqid 2621 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
11 znzrhfo.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
12 eqid 2621 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
1310, 11, 12znbas 19820 . . . . 5 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (Base‘𝑌))
14 znzrhfo.b . . . . 5 𝐵 = (Base‘𝑌)
1513, 14syl6eqr 2673 . . . 4 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵)
16 foeq3 6075 . . . 4 ((ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
1715, 16syl 17 . . 3 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
189, 17mpbid 222 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵)
19 znzrhfo.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
2010, 12, 11, 19znzrh2 19822 . . 3 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
21 foeq1 6073 . . 3 (𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2220, 21syl 17 . 2 (𝑁 ∈ ℕ0 → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2318, 22mpbird 247 1 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1480   ∈ wcel 1987  Vcvv 3189  {csn 4153   ↦ cmpt 4678  –onto→wfo 5850  ‘cfv 5852  (class class class)co 6610  [cec 7692   / cqs 7693  ℕ0cn0 11243  ℤcz 11328  Basecbs 15788   /s cqus 16093   ~QG cqg 17518  Ringcrg 18475  RSpancrsp 19099  ℤringzring 19746  ℤRHomczrh 19776  ℤ/nℤczn 19779 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-addf 9966  ax-mulf 9967 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-ec 7696  df-qs 7700  df-map 7811  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-sup 8299  df-inf 8300  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-fz 12276  df-seq 12749  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-0g 16030  df-imas 16096  df-qus 16097  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-mhm 17263  df-grp 17353  df-minusg 17354  df-sbg 17355  df-mulg 17469  df-subg 17519  df-nsg 17520  df-eqg 17521  df-ghm 17586  df-cmn 18123  df-abl 18124  df-mgp 18418  df-ur 18430  df-ring 18477  df-cring 18478  df-oppr 18551  df-rnghom 18643  df-subrg 18706  df-lmod 18793  df-lss 18861  df-lsp 18900  df-sra 19100  df-rgmod 19101  df-lidl 19102  df-rsp 19103  df-2idl 19160  df-cnfld 19675  df-zring 19747  df-zrh 19780  df-zn 19783 This theorem is referenced by:  zncyg  19825  znf1o  19828  zzngim  19829  znfld  19837  znunit  19840  znrrg  19842  cygznlem2a  19844  cygznlem3  19846  dchrelbas4  24881  dchrzrhcl  24883  lgsdchrval  24992  lgsdchr  24993  rpvmasumlem  25089  dchrmusum2  25096  dchrvmasumlem3  25101  dchrisum0ff  25109  dchrisum0flblem1  25110  rpvmasum2  25114  dchrisum0re  25115  dchrisum0lem2a  25119  dirith  25131
 Copyright terms: Public domain W3C validator