Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zofldiv2 Structured version   Visualization version   GIF version

Theorem zofldiv2 41629
 Description: The floor of an odd integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
zofldiv2 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))

Proof of Theorem zofldiv2
StepHypRef Expression
1 zcn 11329 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2 npcan1 10402 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
32eqcomd 2627 . . . . . . 7 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 − 1) + 1))
41, 3syl 17 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 = ((𝑁 − 1) + 1))
54oveq1d 6622 . . . . 5 (𝑁 ∈ ℤ → (𝑁 / 2) = (((𝑁 − 1) + 1) / 2))
6 peano2zm 11367 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
76zcnd 11430 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
8 1cnd 10003 . . . . . 6 (𝑁 ∈ ℤ → 1 ∈ ℂ)
9 2cnne0 11189 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
109a1i 11 . . . . . 6 (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
11 divdir 10657 . . . . . 6 (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
127, 8, 10, 11syl3anc 1323 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
135, 12eqtrd 2655 . . . 4 (𝑁 ∈ ℤ → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2)))
1413fveq2d 6154 . . 3 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2))))
1514adantr 481 . 2 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2))))
16 halfge0 11196 . . . 4 0 ≤ (1 / 2)
17 halflt1 11197 . . . 4 (1 / 2) < 1
1816, 17pm3.2i 471 . . 3 (0 ≤ (1 / 2) ∧ (1 / 2) < 1)
19 zob 15010 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
2019biimpa 501 . . . 4 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ)
21 halfre 11193 . . . 4 (1 / 2) ∈ ℝ
22 flbi2 12561 . . . 4 ((((𝑁 − 1) / 2) ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2320, 21, 22sylancl 693 . . 3 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1)))
2418, 23mpbiri 248 . 2 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2))
2515, 24eqtrd 2655 1 ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   class class class wbr 4615  ‘cfv 5849  (class class class)co 6607  ℂcc 9881  ℝcr 9882  0cc0 9883  1c1 9884   + caddc 9886   < clt 10021   ≤ cle 10022   − cmin 10213   / cdiv 10631  2c2 11017  ℤcz 11324  ⌊cfl 12534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-n0 11240  df-z 11325  df-uz 11635  df-fl 12536 This theorem is referenced by:  nn0ofldiv2  41630  dignn0flhalflem2  41718  nn0sumshdiglemB  41722
 Copyright terms: Public domain W3C validator