Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem1 Structured version   Visualization version   GIF version

Theorem zorn2lem1 9262
 Description: Lemma for zorn2 9272. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem1
StepHypRef Expression
1 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr2 7439 . . . 4 (𝑥 ∈ On → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
32adantr 481 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
41tfr1 7438 . . . . . 6 𝐹 Fn On
5 fnfun 5946 . . . . . 6 (𝐹 Fn On → Fun 𝐹)
64, 5ax-mp 5 . . . . 5 Fun 𝐹
7 vex 3189 . . . . 5 𝑥 ∈ V
8 resfunexg 6433 . . . . 5 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
96, 7, 8mp2an 707 . . . 4 (𝐹𝑥) ∈ V
10 rneq 5311 . . . . . . . . . . . 12 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
11 df-ima 5087 . . . . . . . . . . . 12 (𝐹𝑥) = ran (𝐹𝑥)
1210, 11syl6eqr 2673 . . . . . . . . . . 11 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
1312eleq2d 2684 . . . . . . . . . 10 (𝑓 = (𝐹𝑥) → (𝑔 ∈ ran 𝑓𝑔 ∈ (𝐹𝑥)))
1413imbi1d 331 . . . . . . . . 9 (𝑓 = (𝐹𝑥) → ((𝑔 ∈ ran 𝑓𝑔𝑅𝑧) ↔ (𝑔 ∈ (𝐹𝑥) → 𝑔𝑅𝑧)))
1514ralbidv2 2978 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧))
1615rabbidv 3177 . . . . . . 7 (𝑓 = (𝐹𝑥) → {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧})
17 zorn2lem.4 . . . . . . 7 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
18 zorn2lem.5 . . . . . . 7 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
1916, 17, 183eqtr4g 2680 . . . . . 6 (𝑓 = (𝐹𝑥) → 𝐶 = 𝐷)
2019eleq2d 2684 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (𝑢𝐶𝑢𝐷))
2120imbi1d 331 . . . . . . 7 (𝑓 = (𝐹𝑥) → ((𝑢𝐶 → ¬ 𝑢𝑤𝑣) ↔ (𝑢𝐷 → ¬ 𝑢𝑤𝑣)))
2221ralbidv2 2978 . . . . . 6 (𝑓 = (𝐹𝑥) → (∀𝑢𝐶 ¬ 𝑢𝑤𝑣 ↔ ∀𝑢𝐷 ¬ 𝑢𝑤𝑣))
2319, 22riotaeqbidv 6568 . . . . 5 (𝑓 = (𝐹𝑥) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
24 eqid 2621 . . . . 5 (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)) = (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))
25 riotaex 6569 . . . . 5 (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ V
2623, 24, 25fvmpt 6239 . . . 4 ((𝐹𝑥) ∈ V → ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
279, 26ax-mp 5 . . 3 ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
283, 27syl6eq 2671 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
29 simprl 793 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 We 𝐴)
30 weso 5065 . . . . . . 7 (𝑤 We 𝐴𝑤 Or 𝐴)
3130ad2antrl 763 . . . . . 6 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
32 vex 3189 . . . . . 6 𝑤 ∈ V
33 soex 7056 . . . . . 6 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
3431, 32, 33sylancl 693 . . . . 5 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐴 ∈ V)
3518, 34rabexd 4774 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ∈ V)
36 ssrab2 3666 . . . . . 6 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ⊆ 𝐴
3718, 36eqsstri 3614 . . . . 5 𝐷𝐴
3837a1i 11 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷𝐴)
39 simprr 795 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ≠ ∅)
40 wereu 5070 . . . 4 ((𝑤 We 𝐴 ∧ (𝐷 ∈ V ∧ 𝐷𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
4129, 35, 38, 39, 40syl13anc 1325 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
42 riotacl 6579 . . 3 (∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣 → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4341, 42syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4428, 43eqeltrd 2698 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃!wreu 2909  {crab 2911  Vcvv 3186   ⊆ wss 3555  ∅c0 3891   class class class wbr 4613   ↦ cmpt 4673   Or wor 4994   We wwe 5032  ran crn 5075   ↾ cres 5076   “ cima 5077  Oncon0 5682  Fun wfun 5841   Fn wfn 5842  ‘cfv 5847  ℩crio 6564  recscrecs 7412 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-wrecs 7352  df-recs 7413 This theorem is referenced by:  zorn2lem2  9263  zorn2lem3  9264  zorn2lem4  9265  zorn2lem5  9266
 Copyright terms: Public domain W3C validator