MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem4 Structured version   Visualization version   GIF version

Theorem zorn2lem4 9923
Description: Lemma for zorn2 9930. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem4 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 405 . 2 ¬ (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)
2 df-ne 3019 . . . . 5 (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅)
32ralbii 3167 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥 ∈ On ¬ 𝐷 = ∅)
4 df-ral 3145 . . . 4 (∀𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
5 ralnex 3238 . . . 4 (∀𝑥 ∈ On ¬ 𝐷 = ∅ ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
63, 4, 53bitr3i 303 . . 3 (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) ↔ ¬ ∃𝑥 ∈ On 𝐷 = ∅)
7 weso 5548 . . . . . . . . 9 (𝑤 We 𝐴𝑤 Or 𝐴)
87adantr 483 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
9 vex 3499 . . . . . . . 8 𝑤 ∈ V
10 soex 7628 . . . . . . . 8 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
118, 9, 10sylancl 588 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → 𝐴 ∈ V)
12 zorn2lem.3 . . . . . . . . . . 11 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
1312tfr1 8035 . . . . . . . . . 10 𝐹 Fn On
14 fvelrnb 6728 . . . . . . . . . 10 (𝐹 Fn On → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦))
1513, 14ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ On (𝐹𝑥) = 𝑦)
16 nfv 1915 . . . . . . . . . . 11 𝑥 𝑤 We 𝐴
17 nfa1 2155 . . . . . . . . . . 11 𝑥𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)
1816, 17nfan 1900 . . . . . . . . . 10 𝑥(𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅))
19 nfv 1915 . . . . . . . . . 10 𝑥 𝑦𝐴
20 zorn2lem.5 . . . . . . . . . . . . . . . . . 18 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
2120ssrab3 4059 . . . . . . . . . . . . . . . . 17 𝐷𝐴
22 zorn2lem.4 . . . . . . . . . . . . . . . . . 18 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
2312, 22, 20zorn2lem1 9920 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
2421, 23sseldi 3967 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐴)
25 eleq1 2902 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐴𝑦𝐴))
2624, 25syl5ibcom 247 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ((𝐹𝑥) = 𝑦𝑦𝐴))
2726exp32 423 . . . . . . . . . . . . . 14 (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2827com12 32 . . . . . . . . . . . . 13 (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → ((𝐹𝑥) = 𝑦𝑦𝐴))))
2928a2d 29 . . . . . . . . . . . 12 (𝑤 We 𝐴 → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3029spsd 2186 . . . . . . . . . . 11 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴))))
3130imp 409 . . . . . . . . . 10 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴)))
3218, 19, 31rexlimd 3319 . . . . . . . . 9 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (∃𝑥 ∈ On (𝐹𝑥) = 𝑦𝑦𝐴))
3315, 32syl5bi 244 . . . . . . . 8 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → (𝑦 ∈ ran 𝐹𝑦𝐴))
3433ssrdv 3975 . . . . . . 7 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹𝐴)
3511, 34ssexd 5230 . . . . . 6 ((𝑤 We 𝐴 ∧ ∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅)) → ran 𝐹 ∈ V)
3635ex 415 . . . . 5 (𝑤 We 𝐴 → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3736adantl 484 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ran 𝐹 ∈ V))
3812, 22, 20zorn2lem3 9922 . . . . . . . . . . . . . 14 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3938exp45 441 . . . . . . . . . . . . 13 (𝑅 Po 𝐴 → (𝑥 ∈ On → (𝑤 We 𝐴 → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4039com23 86 . . . . . . . . . . . 12 (𝑅 Po 𝐴 → (𝑤 We 𝐴 → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦))))))
4140imp 409 . . . . . . . . . . 11 ((𝑅 Po 𝐴𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 ≠ ∅ → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4241a2d 29 . . . . . . . . . 10 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → (𝑥 ∈ On → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))))
4342imp4a 425 . . . . . . . . 9 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4443alrimdv 1930 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ((𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
4544alimdv 1917 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦))))
46 r2al 3203 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) ↔ ∀𝑥𝑦((𝑥 ∈ On ∧ 𝑦𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
4745, 46syl6ibr 254 . . . . . 6 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)))
48 ssid 3991 . . . . . . . 8 On ⊆ On
4913tz7.48lem 8079 . . . . . . . 8 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
5048, 49mpan 688 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun (𝐹 ↾ On))
51 fnrel 6456 . . . . . . . . . . 11 (𝐹 Fn On → Rel 𝐹)
5213, 51ax-mp 5 . . . . . . . . . 10 Rel 𝐹
53 fndm 6457 . . . . . . . . . . . 12 (𝐹 Fn On → dom 𝐹 = On)
5413, 53ax-mp 5 . . . . . . . . . . 11 dom 𝐹 = On
5554eqimssi 4027 . . . . . . . . . 10 dom 𝐹 ⊆ On
56 relssres 5895 . . . . . . . . . 10 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
5752, 55, 56mp2an 690 . . . . . . . . 9 (𝐹 ↾ On) = 𝐹
5857cnveqi 5747 . . . . . . . 8 (𝐹 ↾ On) = 𝐹
5958funeqi 6378 . . . . . . 7 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
6050, 59sylib 220 . . . . . 6 (∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦) → Fun 𝐹)
6147, 60syl6 35 . . . . 5 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → Fun 𝐹))
62 onprc 7501 . . . . . 6 ¬ On ∈ V
63 funrnex 7657 . . . . . . . 8 (dom 𝐹 ∈ V → (Fun 𝐹 → ran 𝐹 ∈ V))
6463com12 32 . . . . . . 7 (Fun 𝐹 → (dom 𝐹 ∈ V → ran 𝐹 ∈ V))
65 df-rn 5568 . . . . . . . 8 ran 𝐹 = dom 𝐹
6665eleq1i 2905 . . . . . . 7 (ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V)
67 dfdm4 5766 . . . . . . . . 9 dom 𝐹 = ran 𝐹
6854, 67eqtr3i 2848 . . . . . . . 8 On = ran 𝐹
6968eleq1i 2905 . . . . . . 7 (On ∈ V ↔ ran 𝐹 ∈ V)
7064, 66, 693imtr4g 298 . . . . . 6 (Fun 𝐹 → (ran 𝐹 ∈ V → On ∈ V))
7162, 70mtoi 201 . . . . 5 (Fun 𝐹 → ¬ ran 𝐹 ∈ V)
7261, 71syl6 35 . . . 4 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → ¬ ran 𝐹 ∈ V))
7337, 72jcad 515 . . 3 ((𝑅 Po 𝐴𝑤 We 𝐴) → (∀𝑥(𝑥 ∈ On → 𝐷 ≠ ∅) → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
746, 73syl5bir 245 . 2 ((𝑅 Po 𝐴𝑤 We 𝐴) → (¬ ∃𝑥 ∈ On 𝐷 = ∅ → (ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V)))
751, 74mt3i 151 1 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148   Po wpo 5474   Or wor 5475   We wwe 5515  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  Rel wrel 5562  Oncon0 6193  Fun wfun 6351   Fn wfn 6352  cfv 6357  crio 7115  recscrecs 8009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-wrecs 7949  df-recs 8010
This theorem is referenced by:  zorn2lem7  9926
  Copyright terms: Public domain W3C validator