MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem6 Structured version   Visualization version   GIF version

Theorem zorn2lem6 9275
Description: Lemma for zorn2 9280. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem6 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem6
Dummy variables 𝑎 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poss 5002 . . . 4 ((𝐹𝑥) ⊆ 𝐴 → (𝑅 Po 𝐴𝑅 Po (𝐹𝑥)))
2 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . 5 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . 5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
5 zorn2lem.7 . . . . 5 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
62, 3, 4, 5zorn2lem5 9274 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
71, 6syl11 33 . . 3 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Po (𝐹𝑥)))
82tfr1 7445 . . . . . . . 8 𝐹 Fn On
9 fnfun 5951 . . . . . . . 8 (𝐹 Fn On → Fun 𝐹)
10 fvelima 6210 . . . . . . . . . . 11 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏𝑥 (𝐹𝑏) = 𝑠)
11 df-rex 2913 . . . . . . . . . . 11 (∃𝑏𝑥 (𝐹𝑏) = 𝑠 ↔ ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1210, 11sylib 208 . . . . . . . . . 10 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1312ex 450 . . . . . . . . 9 (Fun 𝐹 → (𝑠 ∈ (𝐹𝑥) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠)))
14 fvelima 6210 . . . . . . . . . . 11 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎𝑥 (𝐹𝑎) = 𝑟)
15 df-rex 2913 . . . . . . . . . . 11 (∃𝑎𝑥 (𝐹𝑎) = 𝑟 ↔ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1614, 15sylib 208 . . . . . . . . . 10 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1716ex 450 . . . . . . . . 9 (Fun 𝐹 → (𝑟 ∈ (𝐹𝑥) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
1813, 17anim12d 585 . . . . . . . 8 (Fun 𝐹 → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))))
198, 9, 18mp2b 10 . . . . . . 7 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
20 an4 864 . . . . . . . . 9 (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
21202exbii 1772 . . . . . . . 8 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
22 eeanv 2181 . . . . . . . 8 (∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2321, 22bitri 264 . . . . . . 7 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2419, 23sylibr 224 . . . . . 6 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → ∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)))
255neeq1i 2854 . . . . . . . . . . 11 (𝐻 ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
2625ralbii 2975 . . . . . . . . . 10 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
27 imaeq2 5426 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2827raleqdv 3136 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧))
2928rabbidv 3180 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧})
3029neeq1d 2849 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
3130rspccv 3295 . . . . . . . . . . 11 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑏𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
32 imaeq2 5426 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
3332raleqdv 3136 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧))
3433rabbidv 3180 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧})
3534neeq1d 2849 . . . . . . . . . . . 12 (𝑦 = 𝑎 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3635rspccv 3295 . . . . . . . . . . 11 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑎𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3731, 36anim12d 585 . . . . . . . . . 10 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
3826, 37sylbi 207 . . . . . . . . 9 (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
39 onelon 5712 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑏𝑥) → 𝑏 ∈ On)
40 onelon 5712 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑎𝑥) → 𝑎 ∈ On)
4139, 40anim12dan 881 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ (𝑏𝑥𝑎𝑥)) → (𝑏 ∈ On ∧ 𝑎 ∈ On))
4241ex 450 . . . . . . . . . . . . . 14 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑏 ∈ On ∧ 𝑎 ∈ On)))
43 eloni 5697 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ On → Ord 𝑏)
44 eloni 5697 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ On → Ord 𝑎)
45 ordtri3or 5719 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑏 ∧ Ord 𝑎) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
4643, 44, 45syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
47 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧}
482, 3, 47zorn2lem2 9271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
4948adantll 749 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
50 breq12 4623 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏)𝑅(𝐹𝑎) ↔ 𝑠𝑅𝑟))
5150biimpcd 239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑏)𝑅(𝐹𝑎) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟))
5249, 51syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟)))
5352com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5453adantrrl 759 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5554imp 445 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏𝑎𝑠𝑅𝑟))
56 fveq2 6153 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
57 eqeq12 2634 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏) = (𝐹𝑎) ↔ 𝑠 = 𝑟))
5856, 57syl5ib 234 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏 = 𝑎𝑠 = 𝑟))
5958adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏 = 𝑎𝑠 = 𝑟))
60 eqid 2621 . . . . . . . . . . . . . . . . . . . . . . . 24 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧}
612, 3, 60zorn2lem2 9271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
6261adantlr 750 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
63 breq12 4623 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐹𝑎) = 𝑟 ∧ (𝐹𝑏) = 𝑠) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6463ancoms 469 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6564biimpcd 239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑎)𝑅(𝐹𝑏) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠))
6662, 65syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠)))
6766com23 86 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6867adantrrr 760 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6968imp 445 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑎𝑏𝑟𝑅𝑠))
7055, 59, 693orim123d 1404 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏𝑎𝑏 = 𝑎𝑎𝑏) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7146, 70syl5 34 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7271exp31 629 . . . . . . . . . . . . . . 15 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7372com4r 94 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7442, 42, 73syl6c 70 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7574exp4a 632 . . . . . . . . . . . 12 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑤 We 𝐴 → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7675com3r 87 . . . . . . . . . . 11 (𝑤 We 𝐴 → (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7776imp 445 . . . . . . . . . 10 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7877a2d 29 . . . . . . . . 9 ((𝑤 We 𝐴𝑥 ∈ On) → (((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7938, 78syl5 34 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
8079imp4b 612 . . . . . . 7 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8180exlimdvv 1859 . . . . . 6 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8224, 81syl5 34 . . . . 5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8382ralrimivv 2965 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))
8483a1i 11 . . 3 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
857, 84jcad 555 . 2 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))
86 df-so 5001 . 2 (𝑅 Or (𝐹𝑥) ↔ (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8785, 86syl6ibr 242 1 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  Vcvv 3189  wss 3559  c0 3896   class class class wbr 4618  cmpt 4678   Po wpo 4998   Or wor 4999   We wwe 5037  ran crn 5080  cima 5082  Ord word 5686  Oncon0 5687  Fun wfun 5846   Fn wfn 5847  cfv 5852  crio 6570  recscrecs 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-wrecs 7359  df-recs 7420
This theorem is referenced by:  zorn2lem7  9276
  Copyright terms: Public domain W3C validator