MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zprod Structured version   Visualization version   GIF version

Theorem zprod 14711
Description: Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypotheses
Ref Expression
zprod.1 𝑍 = (ℤ𝑀)
zprod.2 (𝜑𝑀 ∈ ℤ)
zprod.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
zprod.4 (𝜑𝐴𝑍)
zprod.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
zprod.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
zprod (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑛,𝑦   𝑘,𝐹   𝑘,𝑛,𝜑,𝑦   𝑘,𝑀,𝑦   𝜑,𝑛,𝑦   𝑛,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑦,𝑛)   𝑀(𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem zprod
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1079 . . . . . . . 8 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2 nfcv 2793 . . . . . . . . . . . 12 𝑖if(𝑘𝐴, 𝐵, 1)
3 nfv 1883 . . . . . . . . . . . . 13 𝑘 𝑖𝐴
4 nfcsb1v 3582 . . . . . . . . . . . . 13 𝑘𝑖 / 𝑘𝐵
5 nfcv 2793 . . . . . . . . . . . . 13 𝑘1
63, 4, 5nfif 4148 . . . . . . . . . . . 12 𝑘if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1)
7 eleq1 2718 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
8 csbeq1a 3575 . . . . . . . . . . . . 13 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
97, 8ifbieq1d 4142 . . . . . . . . . . . 12 (𝑘 = 𝑖 → if(𝑘𝐴, 𝐵, 1) = if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1))
102, 6, 9cbvmpt 4782 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑖 ∈ ℤ ↦ if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1))
11 simpll 805 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝜑)
12 zprod.6 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1312ralrimiva 2995 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
144nfel1 2808 . . . . . . . . . . . . . 14 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
158eleq1d 2715 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
1614, 15rspc 3334 . . . . . . . . . . . . 13 (𝑖𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑖 / 𝑘𝐵 ∈ ℂ))
1713, 16syl5 34 . . . . . . . . . . . 12 (𝑖𝐴 → (𝜑𝑖 / 𝑘𝐵 ∈ ℂ))
1811, 17mpan9 485 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
19 simplr 807 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑚 ∈ ℤ)
20 zprod.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2120ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑀 ∈ ℤ)
22 simpr 476 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑚))
23 zprod.4 . . . . . . . . . . . . 13 (𝜑𝐴𝑍)
24 zprod.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2523, 24syl6sseq 3684 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2625ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑀))
2710, 18, 19, 21, 22, 26prodrb 14706 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2827biimpd 219 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2928expimpd 628 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
301, 29syl5 34 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
3130rexlimdva 3060 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
32 uzssz 11745 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℤ
33 zssre 11422 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℝ
3432, 33sstri 3645 . . . . . . . . . . . . . . . 16 (ℤ𝑀) ⊆ ℝ
3524, 34eqsstri 3668 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℝ
3623, 35syl6ss 3648 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
3736ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ⊆ ℝ)
38 ltso 10156 . . . . . . . . . . . . 13 < Or ℝ
39 soss 5082 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
4037, 38, 39mpisyl 21 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → < Or 𝐴)
41 fzfi 12811 . . . . . . . . . . . . 13 (1...𝑚) ∈ Fin
42 ovex 6718 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ V
4342f1oen 8018 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
4443adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
4544ensymd 8048 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ≈ (1...𝑚))
46 enfii 8218 . . . . . . . . . . . . 13 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
4741, 45, 46sylancr 696 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ∈ Fin)
48 fz1iso 13284 . . . . . . . . . . . 12 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
4940, 47, 48syl2anc 694 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
50 simpll 805 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝜑)
5150, 17mpan9 485 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
52 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
5352csbeq1d 3573 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
54 csbco 3576 . . . . . . . . . . . . . . . 16 (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵
5553, 54syl6eqr 2703 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
5655cbvmptv 4783 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
57 eqid 2651 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵)
58 simplr 807 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
5920ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ)
6025ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑀))
61 simprl 809 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
62 simprr 811 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
6310, 51, 56, 57, 58, 59, 60, 61, 62prodmolem2a 14708 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
6463expr 642 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6564exlimdv 1901 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6649, 65mpd 15 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
67 breq2 4689 . . . . . . . . . 10 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6866, 67syl5ibrcom 237 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
6968expimpd 628 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7069exlimdv 1901 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7170rexlimdva 3060 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7231, 71jaod 394 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7320adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝑀 ∈ ℤ)
7423adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝐴𝑍)
75 zprod.3 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
7624eleq2i 2722 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
77 eluzelz 11735 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
7877adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℤ)
79 uztrn 11742 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (ℤ𝑛) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
8079ancoms 468 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (ℤ𝑛)) → 𝑧 ∈ (ℤ𝑀))
8124eleq2i 2722 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
82 zprod.5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
8324, 32eqsstri 3668 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑍 ⊆ ℤ
8483sseli 3632 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍𝑘 ∈ ℤ)
85 iftrue 4125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8685adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8786, 12eqeltrd 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
8887ex 449 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
89 iffalse 4128 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
90 ax-1cn 10032 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℂ
9189, 90syl6eqel 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
9288, 91pm2.61d1 171 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
93 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
9493fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = if(𝑘𝐴, 𝐵, 1))
9584, 92, 94syl2anr 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = if(𝑘𝐴, 𝐵, 1))
9682, 95eqtr4d 2688 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
9781, 96sylan2br 492 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
9897ralrimiva 2995 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
99 nffvmpt1 6237 . . . . . . . . . . . . . . . . . . . . 21 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)
10099nfeq2 2809 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)
101 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → (𝐹𝑘) = (𝐹𝑧))
102 fveq2 6229 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
103101, 102eqeq12d 2666 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) ↔ (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)))
104100, 103rspc 3334 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)))
10598, 104mpan9 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
10680, 105sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (ℤ𝑛))) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
107106anassrs 681 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑧 ∈ (ℤ𝑛)) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
10878, 107seqfeq 12866 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℤ𝑀)) → seq𝑛( · , 𝐹) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))))
109108breq1d 4695 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
110109anbi2d 740 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
111110exbidv 1890 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
11276, 111sylan2b 491 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
113112rexbidva 3078 . . . . . . . . . 10 (𝜑 → (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
11475, 113mpbid 222 . . . . . . . . 9 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
115114adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
116 simpr 476 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
117 fveq2 6229 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
118117, 24syl6eqr 2703 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ℤ𝑚) = 𝑍)
119118sseq2d 3666 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴𝑍))
120118rexeqdv 3175 . . . . . . . . . 10 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
121 seqeq1 12844 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))))
122121breq1d 4695 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
123119, 120, 1223anbi123d 1439 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴𝑍 ∧ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)))
124123rspcev 3340 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝐴𝑍 ∧ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
12573, 74, 115, 116, 124syl13anc 1368 . . . . . . 7 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
126125orcd 406 . . . . . 6 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
127126ex 449 . . . . 5 (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
12872, 127impbid 202 . . . 4 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
12995, 82eqtr4d 2688 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
13081, 129sylan2br 492 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
131130ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
13299nfeq1 2807 . . . . . . . 8 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)
133102, 101eqeq12d 2666 . . . . . . . 8 (𝑘 = 𝑧 → (((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘) ↔ ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)))
134132, 133rspc 3334 . . . . . . 7 (𝑧 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)))
135131, 134mpan9 485 . . . . . 6 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧))
13620, 135seqfeq 12866 . . . . 5 (𝜑 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑀( · , 𝐹))
137136breq1d 4695 . . . 4 (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , 𝐹) ⇝ 𝑥))
138128, 137bitrd 268 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( · , 𝐹) ⇝ 𝑥))
139138iotabidv 5910 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥))
140 df-prod 14680 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
141 df-fv 5934 . 2 ( ⇝ ‘seq𝑀( · , 𝐹)) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥)
142139, 140, 1413eqtr4g 2710 1 (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  csb 3566  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762   Or wor 5063  cio 5887  1-1-ontowf1o 5925  cfv 5926   Isom wiso 5927  (class class class)co 6690  cen 7994  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cn 11058  cz 11415  cuz 11725  ...cfz 12364  seqcseq 12841  #chash 13157  cli 14259  cprod 14679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-prod 14680
This theorem is referenced by:  iprod  14712  zprodn0  14713  prodss  14721
  Copyright terms: Public domain W3C validator