MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgninv Structured version   Visualization version   GIF version

Theorem zrhpsgninv 19697
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgninv.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgninv.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgninv.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
zrhpsgninv ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))

Proof of Theorem zrhpsgninv
StepHypRef Expression
1 eqid 2609 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgninv.s . . . . 5 𝑆 = (pmSgn‘𝑁)
3 zrhpsgninv.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
41, 2, 3psgninv 19694 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
543adant1 1071 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
65fveq2d 6091 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑌‘(𝑆𝐹)) = (𝑌‘(𝑆𝐹)))
7 eqid 2609 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
81, 2, 7psgnghm2 19693 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
9 eqid 2609 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
103, 9ghmf 17435 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
118, 10syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
12113ad2ant2 1075 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
13 eqid 2609 . . . . . 6 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
141, 3, 13symginv 17593 . . . . 5 (𝐹𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
15143ad2ant3 1076 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
161symggrp 17591 . . . . . 6 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
17163ad2ant2 1075 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (SymGrp‘𝑁) ∈ Grp)
18 simp3 1055 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
193, 13grpinvcl 17238 . . . . 5 (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2017, 18, 19syl2anc 690 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2115, 20eqeltrrd 2688 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
22 fvco3 6169 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2312, 21, 22syl2anc 690 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
24 fvco3 6169 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2512, 18, 24syl2anc 690 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
266, 23, 253eqtr4d 2653 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  {cpr 4126  ccnv 5026  ccom 5031  wf 5785  cfv 5789  (class class class)co 6526  Fincfn 7818  1c1 9793  -cneg 10118  Basecbs 15643  s cress 15644  Grpcgrp 17193  invgcminusg 17194   GrpHom cghm 17428  SymGrpcsymg 17568  pmSgncpsgn 17680  mulGrpcmgp 18260  Ringcrg 18318  fldccnfld 19515  ℤRHomczrh 19614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-xor 1456  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-ot 4133  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-se 4987  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-isom 5798  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-3 10929  df-4 10930  df-5 10931  df-6 10932  df-7 10933  df-8 10934  df-9 10935  df-n0 11142  df-z 11213  df-dec 11328  df-uz 11522  df-rp 11667  df-fz 12155  df-fzo 12292  df-seq 12621  df-exp 12680  df-hash 12937  df-word 13102  df-lsw 13103  df-concat 13104  df-s1 13105  df-substr 13106  df-splice 13107  df-reverse 13108  df-s2 13392  df-struct 15645  df-ndx 15646  df-slot 15647  df-base 15648  df-sets 15649  df-ress 15650  df-plusg 15729  df-mulr 15730  df-starv 15731  df-tset 15735  df-ple 15736  df-ds 15739  df-unif 15740  df-0g 15873  df-gsum 15874  df-mre 16017  df-mrc 16018  df-acs 16020  df-mgm 17013  df-sgrp 17055  df-mnd 17066  df-mhm 17106  df-submnd 17107  df-grp 17196  df-minusg 17197  df-subg 17362  df-ghm 17429  df-gim 17472  df-oppg 17547  df-symg 17569  df-pmtr 17633  df-psgn 17682  df-cmn 17966  df-abl 17967  df-mgp 18261  df-ur 18273  df-ring 18320  df-cring 18321  df-oppr 18394  df-dvdsr 18412  df-unit 18413  df-invr 18443  df-dvr 18454  df-drng 18520  df-cnfld 19516
This theorem is referenced by:  mdetleib2  20160
  Copyright terms: Public domain W3C validator