NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2p1e3c Structured version   Unicode version

Theorem 2p1e3c 6177
Description: Two plus one equals three. (Contributed by SF, 2-Mar-2015.)
Assertion
Ref Expression
2p1e3c 2c 1c 3c

Proof of Theorem 2p1e3c
StepHypRef Expression
1 vvex 4109 . . . . . . . 8
2 vn0 3557 . . . . . . . 8
3 eldifsn 3839 . . . . . . . 8
41, 2, 3mpbir2an 886 . . . . . . 7
5 n0i 3555 . . . . . . 7
64, 5ax-mp 8 . . . . . 6
7 0ex 4110 . . . . . . . . . . 11
87snid 3760 . . . . . . . . . 10
98notnoti 115 . . . . . . . . 9
109intnan 880 . . . . . . . 8
11 eldif 3221 . . . . . . . 8
1210, 11mtbir 290 . . . . . . 7
13 eleq2 2414 . . . . . . . 8
147, 13mpbiri 224 . . . . . . 7
1512, 14mto 167 . . . . . 6
166, 15pm3.2ni 827 . . . . 5
17 snex 4111 . . . . . . 7
181, 17difex 4107 . . . . . 6
1918elpr 3751 . . . . 5
2016, 19mtbir 290 . . . 4
21 disjsn 3786 . . . 4
2220, 21mpbir 200 . . 3
23 prex 4112 . . . 4
24 snex 4111 . . . 4
2523, 24ncdisjun 6157 . . 3 Nc Nc Nc
2622, 25ax-mp 8 . 2 Nc Nc Nc
27 df-3c 6125 . . 3 3c Nc
28 df-tp 3743 . . . 4
2928nceqi 6129 . . 3 Nc Nc
3027, 29eqtri 2373 . 2 3c Nc
31 df-2c 6124 . . 3 2c Nc
3218df1c3 6161 . . 3 1c Nc
3331, 32addceq12i 4388 . 2 2c 1c Nc Nc
3426, 30, 333eqtr4ri 2384 1 2c 1c 3c
Colors of variables: wff set class
Syntax hints:   wn 3   wo 357   wa 358   wceq 1642   wcel 1710   wne 2516  cvv 2859   cdif 3206   cun 3207   cin 3208  c0 3550  csn 3737  cpr 3738  ctp 3739  1cc1c 4134   cplc 4375   Nc cnc 6111  2cc2c 6114  3cc3c 6115
This theorem is referenced by:  nchoicelem9  6297  nchoicelem17  6305
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-4 2135  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-tp 3743  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4439  df-ltfin 4440  df-ncfin 4441  df-tfin 4442  df-evenfin 4443  df-oddfin 4444  df-sfin 4445  df-spfin 4446  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4615  df-br 4632  df-1st 4715  df-swap 4716  df-sset 4717  df-co 4718  df-ima 4719  df-si 4720  df-id 4759  df-xp 4777  df-rel 4778  df-cnv 4779  df-rn 4780  df-dm 4781  df-res 4782  df-fun 4783  df-fn 4784  df-f 4785  df-f1 4786  df-fo 4787  df-f1o 4788  df-fv 4789  df-2nd 4791  df-txp 5787  df-ins2 5793  df-ins3 5794  df-image 5795  df-ins4 5796  df-si3 5797  df-funs 5798  df-fns 5799  df-trans 5919  df-sym 5928  df-er 5929  df-ec 5967  df-qs 5971  df-en 6049  df-ncs 6118  df-nc 6121  df-2c 6124  df-3c 6125
  Copyright terms: Public domain W3C validator