New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  axcnvprim Unicode version

Theorem axcnvprim 4091
 Description: ax-cnv 4080 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.)
Assertion
Ref Expression
axcnvprim
Distinct variable groups:   ,,   ,,   ,   ,,,   ,   ,,   ,,   ,,   ,   ,,,   ,   ,,   ,,,

Proof of Theorem axcnvprim
StepHypRef Expression
1 ax-cnv 4080 . 2
2 df-clel 2349 . . . . . 6
3 axprimlem2 4089 . . . . . . . 8
43anbi1i 676 . . . . . . 7
54exbii 1582 . . . . . 6
62, 5bitri 240 . . . . 5
7 df-clel 2349 . . . . . 6
8 axprimlem2 4089 . . . . . . . 8
98anbi1i 676 . . . . . . 7
109exbii 1582 . . . . . 6
117, 10bitri 240 . . . . 5
126, 11bibi12i 306 . . . 4
13122albii 1567 . . 3
1413exbii 1582 . 2
151, 14mpbi 199 1
 Colors of variables: wff setvar class Syntax hints:   wb 176   wo 357   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710  copk 4057 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-cnv 4080 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742  df-opk 4058 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator