New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  intpr Unicode version

Theorem intpr 3959
 Description: The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
Hypotheses
Ref Expression
intpr.1
intpr.2
Assertion
Ref Expression
intpr

Proof of Theorem intpr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1593 . . . 4
2 vex 2862 . . . . . . . 8
32elpr 3751 . . . . . . 7
43imbi1i 315 . . . . . 6
5 jaob 758 . . . . . 6
64, 5bitri 240 . . . . 5
76albii 1566 . . . 4
8 intpr.1 . . . . . 6
98clel4 2978 . . . . 5
10 intpr.2 . . . . . 6
1110clel4 2978 . . . . 5
129, 11anbi12i 678 . . . 4
131, 7, 123bitr4i 268 . . 3
14 vex 2862 . . . 4
1514elint 3932 . . 3
16 elin 3219 . . 3
1713, 15, 163bitr4i 268 . 2
1817eqriv 2350 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wo 357   wa 358  wal 1540   wceq 1642   wcel 1710  cvv 2859   cin 3208  cpr 3738  cint 3926 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-sn 3741  df-pr 3742  df-int 3927 This theorem is referenced by:  intprg  3960  uniintsn  3963
 Copyright terms: Public domain W3C validator