New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nnadjoinpw Unicode version

 Description: Adjoining an element to a power class. Theorem X.1.40 of [Rosser] p. 530. (Contributed by SF, 27-Jan-2015.)
Assertion
Ref Expression

Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
2 simp3 957 . . 3 Nn Nn
3 simp1r 980 . . . 4 Nn Nn Nn
4 simp2r 982 . . . . 5 Nn Nn
5 unipw 4117 . . . . . 6
65compleqi 3244 . . . . 5
74, 6syl6eleqr 2444 . . . 4 Nn Nn
8 nnadjoin 4520 . . . 4 Nn
93, 2, 7, 8syl3anc 1182 . . 3 Nn Nn
10 elcomplg 3218 . . . . . . . . 9
1110ibi 232 . . . . . . . 8
124, 11syl 15 . . . . . . 7 Nn Nn
13 snssg 3844 . . . . . . . 8
144, 13syl 15 . . . . . . 7 Nn Nn
1512, 14mtbid 291 . . . . . 6 Nn Nn
1615intnand 882 . . . . 5 Nn Nn
1716ralrimivw 2698 . . . 4 Nn Nn
18 disjr 3592 . . . . 5
19 eqeq1 2359 . . . . . . 7
2019rexbidv 2635 . . . . . 6
2120ralab 2997 . . . . 5
22 ralcom4 2877 . . . . . 6
23 vex 2862 . . . . . . . . . 10
24 snex 4111 . . . . . . . . . 10
2523, 24unex 4106 . . . . . . . . 9
26 eleq1 2413 . . . . . . . . . 10
2726notbid 285 . . . . . . . . 9
2825, 27ceqsalv 2885 . . . . . . . 8
2925elpw 3728 . . . . . . . . 9
30 unss 3437 . . . . . . . . 9
3129, 30bitr4i 243 . . . . . . . 8
3228, 31xchbinx 301 . . . . . . 7
3332ralbii 2638 . . . . . 6
34 r19.23v 2730 . . . . . . 7
3534albii 1566 . . . . . 6
3622, 33, 353bitr3ri 267 . . . . 5
3718, 21, 363bitri 262 . . . 4
3817, 37sylibr 203 . . 3 Nn Nn
39 eladdci 4399 . . 3
402, 9, 38, 39syl3anc 1182 . 2 Nn Nn
411, 40syl5eqel 2437 1 Nn Nn
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 176   wa 358   w3a 934  wal 1540   wceq 1642   wcel 1710  cab 2339  wral 2614  wrex 2615   ∼ ccompl 3205   cun 3207   cin 3208   wss 3257  c0 3550  cpw 3722  csn 3737  cuni 3891   Nn cnnc 4373   cplc 4375 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-0c 4377  df-addc 4378  df-nnc 4379 This theorem is referenced by:  nnpweq  4523  sfindbl  4530
 Copyright terms: Public domain W3C validator