NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opeq1 Unicode version

Theorem opeq1 4578
Description: Equality theorem for ordered pairs. (Contributed by SF, 2-Jan-2015.)
Assertion
Ref Expression
opeq1

Proof of Theorem opeq1
StepHypRef Expression
1 imakeq2 4225 . . 3 ImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k ImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k
21uneq1d 3417 . 2 ImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck ImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck
3 dfop2 4575 . 2 ImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck
4 dfop2 4575 . 2 ImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Ins2k Sk Ins3k kImagekImagek Ins3k Ins3k Sk Ins2k Sk k1 1 1c Ins2k Ins2k Sk Ins2k Ins3k Sk Ins3k SIk SIk Sk k1 1 1 1 1ck1 1 1c Nn k k Nn k k Sk 0c k k1 1 1ck
52, 3, 43eqtr4g 2410 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wceq 1642  cvv 2859   ∼ ccompl 3205   cdif 3206   cun 3207   cin 3208   csymdif 3209  csn 3737  1cc1c 4134  1 cpw1 4135   k cxpk 4174  kccnvk 4175   Ins2k cins2k 4176   Ins3k cins3k 4177  kcimak 4179   k ccomk 4180   SIk csik 4181  Imagekcimagek 4182   Sk cssetk 4183   k cidk 4184   Nn cnnc 4373  0cc0c 4374  cop 4561
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566
This theorem is referenced by:  opeq12  4580  opeq1i  4581  opeq1d  4584  eqvinop  4606  cbvopab1  4632  cbvopab1s  4634  breq1  4642  opelopabsb  4697  el1st  4729  br1stg  4730  elswap  4740  dfima2  4745  dfco1  4748  dfsi2  4751  opeliunxp2  4822  ssrel  4844  ssopr  4846  br1st  4858  brswap2  4860  opabid2  4861  elsnres  4996  elxp4  5108  dfxp2  5113  fnunsn  5190  f1osng  5323  fvelrn  5413  fsng  5433  fvsng  5446  oveq1  5530  oprabid  5550  dfoprab2  5558  cbvoprab1  5567  oprabid2  5646  trtxp  5781  brtxp  5783  otelins2  5791  otelins3  5792  oqelins4  5794  qrpprod  5836  xpassen  6057  addccan2nclem1  6263
  Copyright terms: Public domain W3C validator