New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbcieg Unicode version

Theorem sbcieg 3078
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
Hypothesis
Ref Expression
sbcieg.1
Assertion
Ref Expression
sbcieg
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem sbcieg
StepHypRef Expression
1 elex 2867 . 2
2 nfv 1619 . . 3
3 sbcieg.1 . . 3
42, 3sbciegf 3077 . 2
51, 4syl 15 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 176   wceq 1642   wcel 1710  cvv 2859  wsbc 3046 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sbc 3047 This theorem is referenced by:  sbcie  3080  ralsng  3765  rexsng  3766
 Copyright terms: Public domain W3C validator