NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ad2antrl GIF version

Theorem ad2antrl 708
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.)
Hypothesis
Ref Expression
ad2ant.1 (φψ)
Assertion
Ref Expression
ad2antrl ((χ (φ θ)) → ψ)

Proof of Theorem ad2antrl
StepHypRef Expression
1 ad2ant.1 . . 3 (φψ)
21adantr 451 . 2 ((φ θ) → ψ)
32adantl 452 1 ((χ (φ θ)) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  simprl  732  simprll  738  simprlr  739  preaddccan2  4455  ncfinlower  4483  tfinnn  4534  sfinltfin  4535  enadjlem1  6059  sbthlem3  6205  nchoicelem17  6305  nchoice  6308
  Copyright terms: Public domain W3C validator