NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ceqsex4v GIF version

Theorem ceqsex4v 2898
Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
Hypotheses
Ref Expression
ceqsex4v.1 A V
ceqsex4v.2 B V
ceqsex4v.3 C V
ceqsex4v.4 D V
ceqsex4v.7 (x = A → (φψ))
ceqsex4v.8 (y = B → (ψχ))
ceqsex4v.9 (z = C → (χθ))
ceqsex4v.10 (w = D → (θτ))
Assertion
Ref Expression
ceqsex4v (xyzw((x = A y = B) (z = C w = D) φ) ↔ τ)
Distinct variable groups:   x,y,z,w,A   x,B,y,z,w   x,C,y,z,w   x,D,y,z,w   ψ,x   χ,y   θ,z   τ,w
Allowed substitution hints:   φ(x,y,z,w)   ψ(y,z,w)   χ(x,z,w)   θ(x,y,w)   τ(x,y,z)

Proof of Theorem ceqsex4v
StepHypRef Expression
1 19.42vv 1907 . . . 4 (zw((x = A y = B) (z = C w = D φ)) ↔ ((x = A y = B) zw(z = C w = D φ)))
2 3anass 938 . . . . . 6 (((x = A y = B) (z = C w = D) φ) ↔ ((x = A y = B) ((z = C w = D) φ)))
3 df-3an 936 . . . . . . 7 ((z = C w = D φ) ↔ ((z = C w = D) φ))
43anbi2i 675 . . . . . 6 (((x = A y = B) (z = C w = D φ)) ↔ ((x = A y = B) ((z = C w = D) φ)))
52, 4bitr4i 243 . . . . 5 (((x = A y = B) (z = C w = D) φ) ↔ ((x = A y = B) (z = C w = D φ)))
652exbii 1583 . . . 4 (zw((x = A y = B) (z = C w = D) φ) ↔ zw((x = A y = B) (z = C w = D φ)))
7 df-3an 936 . . . 4 ((x = A y = B zw(z = C w = D φ)) ↔ ((x = A y = B) zw(z = C w = D φ)))
81, 6, 73bitr4i 268 . . 3 (zw((x = A y = B) (z = C w = D) φ) ↔ (x = A y = B zw(z = C w = D φ)))
982exbii 1583 . 2 (xyzw((x = A y = B) (z = C w = D) φ) ↔ xy(x = A y = B zw(z = C w = D φ)))
10 ceqsex4v.1 . . 3 A V
11 ceqsex4v.2 . . 3 B V
12 ceqsex4v.7 . . . . 5 (x = A → (φψ))
13123anbi3d 1258 . . . 4 (x = A → ((z = C w = D φ) ↔ (z = C w = D ψ)))
14132exbidv 1628 . . 3 (x = A → (zw(z = C w = D φ) ↔ zw(z = C w = D ψ)))
15 ceqsex4v.8 . . . . 5 (y = B → (ψχ))
16153anbi3d 1258 . . . 4 (y = B → ((z = C w = D ψ) ↔ (z = C w = D χ)))
17162exbidv 1628 . . 3 (y = B → (zw(z = C w = D ψ) ↔ zw(z = C w = D χ)))
1810, 11, 14, 17ceqsex2v 2896 . 2 (xy(x = A y = B zw(z = C w = D φ)) ↔ zw(z = C w = D χ))
19 ceqsex4v.3 . . 3 C V
20 ceqsex4v.4 . . 3 D V
21 ceqsex4v.9 . . 3 (z = C → (χθ))
22 ceqsex4v.10 . . 3 (w = D → (θτ))
2319, 20, 21, 22ceqsex2v 2896 . 2 (zw(z = C w = D χ) ↔ τ)
249, 18, 233bitri 262 1 (xyzw((x = A y = B) (z = C w = D) φ) ↔ τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  Vcvv 2859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2861
This theorem is referenced by:  ceqsex8v  2900
  Copyright terms: Public domain W3C validator