New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbco3gOLD GIF version

Theorem csbco3gOLD 3194
 Description: Composition of two class substitutions. Obsolete as of 11-Nov-2016. (Contributed by NM, 27-Nov-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
csbco3g.1 (x = AB = D)
Assertion
Ref Expression
csbco3gOLD ((A V x B W) → [A / x][B / y]C = [D / y]C)
Distinct variable groups:   x,A   x,C   x,D   x,y
Allowed substitution hints:   A(y)   B(x,y)   C(y)   D(y)   V(x,y)   W(x,y)

Proof of Theorem csbco3gOLD
StepHypRef Expression
1 csbco3g.1 . . 3 (x = AB = D)
21csbco3g 3193 . 2 (A V[A / x][B / y]C = [D / y]C)
32adantr 451 1 ((A V x B W) → [A / x][B / y]C = [D / y]C)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358  ∀wal 1540   = wceq 1642   ∈ wcel 1710  [csb 3136 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sbc 3047  df-csb 3137 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator