New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-cnvk GIF version

Definition df-cnvk 4186
 Description: Define the Kuratowski converse. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
df-cnvk kA = {x yz(x = ⟪y, zz, y A)}
Distinct variable group:   x,A,y,z

Detailed syntax breakdown of Definition df-cnvk
StepHypRef Expression
1 cA . . 3 class A
21ccnvk 4175 . 2 class kA
3 vx . . . . . . . 8 setvar x
43cv 1641 . . . . . . 7 class x
5 vy . . . . . . . . 9 setvar y
65cv 1641 . . . . . . . 8 class y
7 vz . . . . . . . . 9 setvar z
87cv 1641 . . . . . . . 8 class z
96, 8copk 4057 . . . . . . 7 class y, z
104, 9wceq 1642 . . . . . 6 wff x = ⟪y, z
118, 6copk 4057 . . . . . . 7 class z, y
1211, 1wcel 1710 . . . . . 6 wff z, y A
1310, 12wa 358 . . . . 5 wff (x = ⟪y, zz, y A)
1413, 7wex 1541 . . . 4 wff z(x = ⟪y, zz, y A)
1514, 5wex 1541 . . 3 wff yz(x = ⟪y, zz, y A)
1615, 3cab 2339 . 2 class {x yz(x = ⟪y, zz, y A)}
172, 16wceq 1642 1 wff kA = {x yz(x = ⟪y, zz, y A)}
 Colors of variables: wff setvar class This definition is referenced by:  cnvkeq  4215  opkelcnvkg  4249  cnvkssvvk  4275
 Copyright terms: Public domain W3C validator