New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfproj22 GIF version

Theorem dfproj22 4577
 Description: Express the second projection operator via the set construction functors. (Contributed by SF, 2-Jan-2015.)
Assertion
Ref Expression
dfproj22 Proj2 A = (k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k A)

Proof of Theorem dfproj22
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-proj2 4568 . 2 Proj2 A = {x ( Phi x ∪ {0c}) A}
2 vex 2862 . . . . . . 7 y V
3 vex 2862 . . . . . . 7 x V
42, 3opkelcnvk 4250 . . . . . 6 (⟪y, x k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ ⟪x, y ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c))
5 dfop2lem1 4573 . . . . . 6 (⟪x, y ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ y = ( Phi x ∪ {0c}))
64, 5bitri 240 . . . . 5 (⟪y, x k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ y = ( Phi x ∪ {0c}))
76rexbii 2639 . . . 4 (y Ay, x k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ y A y = ( Phi x ∪ {0c}))
83elimak 4259 . . . 4 (x (k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k A) ↔ y Ay, x k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c))
9 risset 2661 . . . 4 (( Phi x ∪ {0c}) Ay A y = ( Phi x ∪ {0c}))
107, 8, 93bitr4i 268 . . 3 (x (k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k A) ↔ ( Phi x ∪ {0c}) A)
1110abbi2i 2464 . 2 (k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k A) = {x ( Phi x ∪ {0c}) A}
121, 11eqtr4i 2376 1 Proj2 A = (k ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) “k A)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ∈ wcel 1710  {cab 2339  ∃wrex 2615  Vcvv 2859   ∼ ccompl 3205   ∖ cdif 3206   ∪ cun 3207   ∩ cin 3208   ⊕ csymdif 3209  {csn 3737  ⟪copk 4057  1cc1c 4134  ℘1cpw1 4135   ×k cxpk 4174  ◡kccnvk 4175   Ins2k cins2k 4176   Ins3k cins3k 4177   “k cimak 4179   ∘k ccomk 4180   SIk csik 4181  Imagekcimagek 4182   Sk cssetk 4183   Ik cidk 4184   Nn cnnc 4373  0cc0c 4374   Phi cphi 4562   Proj2 cproj2 4564 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-proj2 4568 This theorem is referenced by:  proj2eq  4590  proj2exg  4592
 Copyright terms: Public domain W3C validator