New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpwid GIF version

Theorem elpwid 3731
 Description: An element of a power class is a subclass. Deduction form of elpwi 3730. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1 (φA B)
Assertion
Ref Expression
elpwid (φA B)

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2 (φA B)
2 elpwi 3730 . 2 (A BA B)
31, 2syl 15 1 (φA B)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1710   ⊆ wss 3257  ℘cpw 3722 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259  df-pw 3724 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator