NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exancom GIF version

Theorem exancom 1586
Description: Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
exancom (x(φ ψ) ↔ x(ψ φ))

Proof of Theorem exancom
StepHypRef Expression
1 ancom 437 . 2 ((φ ψ) ↔ (ψ φ))
21exbii 1582 1 (x(φ ψ) ↔ x(ψ φ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  19.29r  1597  19.42  1880  risset  2661  morex  3020  pwpw0  3855  pwsnALT  3882  dfuni2  3893  eluni2  3895  unipr  3905  dfiun2g  3999  dfimak2  4298  insklem  4304  el1st  4729  setconslem6  4736  dfcnv2  5100  imadif  5171  addcfnex  5824  addccan2nclem1  6263
  Copyright terms: Public domain W3C validator