New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ffnfv GIF version

Theorem ffnfv 5427
 Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
ffnfv (F:A–→B ↔ (F Fn A x A (Fx) B))
Distinct variable groups:   x,A   x,B   x,F

Proof of Theorem ffnfv
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 ffn 5223 . . 3 (F:A–→BF Fn A)
2 ffvelrn 5415 . . . 4 ((F:A–→B x A) → (Fx) B)
32ralrimiva 2697 . . 3 (F:A–→Bx A (Fx) B)
41, 3jca 518 . 2 (F:A–→B → (F Fn A x A (Fx) B))
5 simpl 443 . . 3 ((F Fn A x A (Fx) B) → F Fn A)
6 fvelrnb 5365 . . . . . 6 (F Fn A → (y ran Fx A (Fx) = y))
76biimpd 198 . . . . 5 (F Fn A → (y ran Fx A (Fx) = y))
8 nfra1 2664 . . . . . 6 xx A (Fx) B
9 nfv 1619 . . . . . 6 x y B
10 rsp 2674 . . . . . . 7 (x A (Fx) B → (x A → (Fx) B))
11 eleq1 2413 . . . . . . . 8 ((Fx) = y → ((Fx) By B))
1211biimpcd 215 . . . . . . 7 ((Fx) B → ((Fx) = yy B))
1310, 12syl6 29 . . . . . 6 (x A (Fx) B → (x A → ((Fx) = yy B)))
148, 9, 13rexlimd 2735 . . . . 5 (x A (Fx) B → (x A (Fx) = yy B))
157, 14sylan9 638 . . . 4 ((F Fn A x A (Fx) B) → (y ran Fy B))
1615ssrdv 3278 . . 3 ((F Fn A x A (Fx) B) → ran F B)
17 df-f 4791 . . 3 (F:A–→B ↔ (F Fn A ran F B))
185, 16, 17sylanbrc 645 . 2 ((F Fn A x A (Fx) B) → F:A–→B)
194, 18impbii 180 1 (F:A–→B ↔ (F Fn A x A (Fx) B))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358   = wceq 1642   ∈ wcel 1710  ∀wral 2614  ∃wrex 2615   ⊆ wss 3257  ran crn 4773   Fn wfn 4776  –→wf 4777   ‘cfv 4781 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-co 4726  df-ima 4727  df-id 4767  df-cnv 4785  df-rn 4786  df-dm 4787  df-fun 4789  df-fn 4790  df-f 4791  df-fv 4795 This theorem is referenced by:  ffnfvf  5428  fnfvrnss  5429  fopabfv  5430  ffnov  5587
 Copyright terms: Public domain W3C validator