New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  fressnfv GIF version

Theorem fressnfv 5439
 Description: The value of a function restricted to a singleton. (Contributed by set.mm contributors, 9-Oct-2004.)
Assertion
Ref Expression
fressnfv ((F Fn A B A) → ((F {B}):{B}–→C ↔ (FB) C))

Proof of Theorem fressnfv
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 sneq 3744 . . . . . 6 (x = B → {x} = {B})
2 reseq2 4929 . . . . . . . 8 ({x} = {B} → (F {x}) = (F {B}))
32feq1d 5214 . . . . . . 7 ({x} = {B} → ((F {x}):{x}–→C ↔ (F {B}):{x}–→C))
4 feq2 5211 . . . . . . 7 ({x} = {B} → ((F {B}):{x}–→C ↔ (F {B}):{B}–→C))
53, 4bitrd 244 . . . . . 6 ({x} = {B} → ((F {x}):{x}–→C ↔ (F {B}):{B}–→C))
61, 5syl 15 . . . . 5 (x = B → ((F {x}):{x}–→C ↔ (F {B}):{B}–→C))
7 fveq2 5328 . . . . . 6 (x = B → (Fx) = (FB))
87eleq1d 2419 . . . . 5 (x = B → ((Fx) C ↔ (FB) C))
96, 8bibi12d 312 . . . 4 (x = B → (((F {x}):{x}–→C ↔ (Fx) C) ↔ ((F {B}):{B}–→C ↔ (FB) C)))
109imbi2d 307 . . 3 (x = B → ((F Fn A → ((F {x}):{x}–→C ↔ (Fx) C)) ↔ (F Fn A → ((F {B}):{B}–→C ↔ (FB) C))))
11 fnressn 5438 . . . . 5 ((F Fn A x A) → (F {x}) = {x, (Fx)})
12 vex 2862 . . . . . . . . . . 11 x V
1312snid 3760 . . . . . . . . . 10 x {x}
14 fvres 5342 . . . . . . . . . 10 (x {x} → ((F {x}) ‘x) = (Fx))
1513, 14ax-mp 8 . . . . . . . . 9 ((F {x}) ‘x) = (Fx)
1615opeq2i 4582 . . . . . . . 8 x, ((F {x}) ‘x) = x, (Fx)
1716sneqi 3745 . . . . . . 7 {x, ((F {x}) ‘x)} = {x, (Fx)}
1817eqeq2i 2363 . . . . . 6 ((F {x}) = {x, ((F {x}) ‘x)} ↔ (F {x}) = {x, (Fx)})
1912fsn2 5434 . . . . . . 7 ((F {x}):{x}–→C ↔ (((F {x}) ‘x) C (F {x}) = {x, ((F {x}) ‘x)}))
2015eleq1i 2416 . . . . . . . 8 (((F {x}) ‘x) C ↔ (Fx) C)
21 iba 489 . . . . . . . 8 ((F {x}) = {x, ((F {x}) ‘x)} → (((F {x}) ‘x) C ↔ (((F {x}) ‘x) C (F {x}) = {x, ((F {x}) ‘x)})))
2220, 21syl5rbbr 251 . . . . . . 7 ((F {x}) = {x, ((F {x}) ‘x)} → ((((F {x}) ‘x) C (F {x}) = {x, ((F {x}) ‘x)}) ↔ (Fx) C))
2319, 22syl5bb 248 . . . . . 6 ((F {x}) = {x, ((F {x}) ‘x)} → ((F {x}):{x}–→C ↔ (Fx) C))
2418, 23sylbir 204 . . . . 5 ((F {x}) = {x, (Fx)} → ((F {x}):{x}–→C ↔ (Fx) C))
2511, 24syl 15 . . . 4 ((F Fn A x A) → ((F {x}):{x}–→C ↔ (Fx) C))
2625expcom 424 . . 3 (x A → (F Fn A → ((F {x}):{x}–→C ↔ (Fx) C)))
2710, 26vtoclga 2920 . 2 (B A → (F Fn A → ((F {B}):{B}–→C ↔ (FB) C)))
2827impcom 419 1 ((F Fn A B A) → ((F {B}):{B}–→C ↔ (FB) C))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358   = wceq 1642   ∈ wcel 1710  {csn 3737  ⟨cop 4561   ↾ cres 4774   Fn wfn 4776  –→wf 4777   ‘cfv 4781 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-co 4726  df-ima 4727  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-fv 4795 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator