New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  hboprab3 GIF version

Theorem hboprab3 5561
 Description: The abstraction variables in an operation class abstraction are not free. (Contributed by set.mm contributors, 22-Aug-2013.)
Assertion
Ref Expression
hboprab3 (w {x, y, z φ} → z w {x, y, z φ})
Distinct variable group:   z,w
Allowed substitution hints:   φ(x,y,z,w)

Proof of Theorem hboprab3
Dummy variable v is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5528 . 2 {x, y, z φ} = {v xyz(v = x, y, z φ)}
2 hbe1 1731 . . . . 5 (z(v = x, y, z φ) → zz(v = x, y, z φ))
32hbex 1841 . . . 4 (yz(v = x, y, z φ) → zyz(v = x, y, z φ))
43hbex 1841 . . 3 (xyz(v = x, y, z φ) → zxyz(v = x, y, z φ))
54hbab 2344 . 2 (w {v xyz(v = x, y, z φ)} → z w {v xyz(v = x, y, z φ)})
61, 5hbxfreq 2456 1 (w {x, y, z φ} → z w {x, y, z φ})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358  ∀wal 1540  ∃wex 1541   = wceq 1642   ∈ wcel 1710  {cab 2339  ⟨cop 4561  {coprab 5527 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-oprab 5528 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator