New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  in13 GIF version

Theorem in13 3468
 Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in13 (A ∩ (BC)) = (C ∩ (BA))

Proof of Theorem in13
StepHypRef Expression
1 in32 3467 . 2 ((BC) ∩ A) = ((BA) ∩ C)
2 incom 3448 . 2 (A ∩ (BC)) = ((BC) ∩ A)
3 incom 3448 . 2 (C ∩ (BA)) = ((BA) ∩ C)
41, 2, 33eqtr4i 2383 1 (A ∩ (BC)) = (C ∩ (BA))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642   ∩ cin 3208 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator