New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ins2keq GIF version

Theorem ins2keq 4218
 Description: Equality theorem for the Kuratowski insert two operator. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
ins2keq (A = BIns2k A = Ins2k B)

Proof of Theorem ins2keq
Dummy variables x y z w t u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2414 . . . . . . 7 (A = B → (⟪w, u A ↔ ⟪w, u B))
213anbi3d 1258 . . . . . 6 (A = B → ((y = {{w}} z = ⟪t, uw, u A) ↔ (y = {{w}} z = ⟪t, uw, u B)))
323exbidv 1629 . . . . 5 (A = B → (wtu(y = {{w}} z = ⟪t, uw, u A) ↔ wtu(y = {{w}} z = ⟪t, uw, u B)))
43anbi2d 684 . . . 4 (A = B → ((x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u A)) ↔ (x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u B))))
542exbidv 1628 . . 3 (A = B → (yz(x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u A)) ↔ yz(x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u B))))
65abbidv 2467 . 2 (A = B → {x yz(x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u A))} = {x yz(x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u B))})
7 df-ins2k 4187 . 2 Ins2k A = {x yz(x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u A))}
8 df-ins2k 4187 . 2 Ins2k B = {x yz(x = ⟪y, z wtu(y = {{w}} z = ⟪t, uw, u B))}
96, 7, 83eqtr4g 2410 1 (A = BIns2k A = Ins2k B)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   ∧ w3a 934  ∃wex 1541   = wceq 1642   ∈ wcel 1710  {cab 2339  {csn 3737  ⟪copk 4057   Ins2k cins2k 4176 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-ins2k 4187 This theorem is referenced by:  ins2keqi  4220  ins2keqd  4222  cokeq1  4230  ins2kexg  4305
 Copyright terms: Public domain W3C validator