NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  jctir GIF version

Theorem jctir 524
Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993.)
Hypotheses
Ref Expression
jctil.1 (φψ)
jctil.2 χ
Assertion
Ref Expression
jctir (φ → (ψ χ))

Proof of Theorem jctir
StepHypRef Expression
1 jctil.1 . 2 (φψ)
2 jctil.2 . . 3 χ
32a1i 10 . 2 (φχ)
41, 3jca 518 1 (φ → (ψ χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  jctr  526  equvini  1987  uniintsn  3963  ltfinp1  4462  vfinspeqtncv  4553  foimacnv  5303  respreima  5410  fpr  5437  spacssnc  6284
  Copyright terms: Public domain W3C validator