NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ltfinirr GIF version

Theorem ltfinirr 4457
Description: Irreflexive law for finite less than. (Contributed by SF, 29-Jan-2015.)
Assertion
Ref Expression
ltfinirr (A Nn → ¬ ⟪A, A <fin )

Proof of Theorem ltfinirr
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 0cnsuc 4401 . . . . . . . 8 (x +c 1c) ≠ 0c
21necomi 2598 . . . . . . 7 0c ≠ (x +c 1c)
3 df-ne 2518 . . . . . . 7 (0c ≠ (x +c 1c) ↔ ¬ 0c = (x +c 1c))
42, 3mpbi 199 . . . . . 6 ¬ 0c = (x +c 1c)
5 addcid1 4405 . . . . . . . . 9 (A +c 0c) = A
65eqcomi 2357 . . . . . . . 8 A = (A +c 0c)
7 addcass 4415 . . . . . . . 8 ((A +c x) +c 1c) = (A +c (x +c 1c))
86, 7eqeq12i 2366 . . . . . . 7 (A = ((A +c x) +c 1c) ↔ (A +c 0c) = (A +c (x +c 1c)))
9 simpll 730 . . . . . . . 8 (((A Nn A) x Nn ) → A Nn )
10 peano1 4402 . . . . . . . . 9 0c Nn
1110a1i 10 . . . . . . . 8 (((A Nn A) x Nn ) → 0c Nn )
12 peano2 4403 . . . . . . . . 9 (x Nn → (x +c 1c) Nn )
1312adantl 452 . . . . . . . 8 (((A Nn A) x Nn ) → (x +c 1c) Nn )
145neeq1i 2526 . . . . . . . . . 10 ((A +c 0c) ≠ A)
1514biimpri 197 . . . . . . . . 9 (A → (A +c 0c) ≠ )
1615ad2antlr 707 . . . . . . . 8 (((A Nn A) x Nn ) → (A +c 0c) ≠ )
17 preaddccan2 4455 . . . . . . . 8 (((A Nn 0c Nn (x +c 1c) Nn ) (A +c 0c) ≠ ) → ((A +c 0c) = (A +c (x +c 1c)) ↔ 0c = (x +c 1c)))
189, 11, 13, 16, 17syl31anc 1185 . . . . . . 7 (((A Nn A) x Nn ) → ((A +c 0c) = (A +c (x +c 1c)) ↔ 0c = (x +c 1c)))
198, 18syl5bb 248 . . . . . 6 (((A Nn A) x Nn ) → (A = ((A +c x) +c 1c) ↔ 0c = (x +c 1c)))
204, 19mtbiri 294 . . . . 5 (((A Nn A) x Nn ) → ¬ A = ((A +c x) +c 1c))
2120nrexdv 2717 . . . 4 ((A Nn A) → ¬ x Nn A = ((A +c x) +c 1c))
2221ex 423 . . 3 (A Nn → (A → ¬ x Nn A = ((A +c x) +c 1c)))
23 imnan 411 . . 3 ((A → ¬ x Nn A = ((A +c x) +c 1c)) ↔ ¬ (A x Nn A = ((A +c x) +c 1c)))
2422, 23sylib 188 . 2 (A Nn → ¬ (A x Nn A = ((A +c x) +c 1c)))
25 opkltfing 4449 . . 3 ((A Nn A Nn ) → (⟪A, A <fin ↔ (A x Nn A = ((A +c x) +c 1c))))
2625anidms 626 . 2 (A Nn → (⟪A, A <fin ↔ (A x Nn A = ((A +c x) +c 1c))))
2724, 26mtbird 292 1 (A Nn → ¬ ⟪A, A <fin )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  wne 2516  wrex 2615  c0 3550  copk 4057  1cc1c 4134   Nn cnnc 4373  0cc0c 4374   +c cplc 4375   <fin cltfin 4433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-0c 4377  df-addc 4378  df-nnc 4379  df-ltfin 4441
This theorem is referenced by:  ltfinasym  4460  lenltfin  4469  tfinltfin  4501  sfin111  4536  vfinncvntnn  4548
  Copyright terms: Public domain W3C validator