NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ltfintrilem1 GIF version

Theorem ltfintrilem1 4465
Description: Lemma for ltfintri 4466. Establish stratification for induction. (Contributed by SF, 29-Jan-2015.)
Assertion
Ref Expression
ltfintrilem1 {m (n Nn → (m → (⟪m, n <fin m = n n, m <fin )))} V
Distinct variable group:   m,n

Proof of Theorem ltfintrilem1
Dummy variable t is distinct from all other variables.
StepHypRef Expression
1 unab 3521 . . 3 ({m ¬ n Nn } ∪ {m (m = (⟪m, n <fin m = n n, m <fin ))}) = {m n Nn (m = (⟪m, n <fin m = n n, m <fin )))}
2 df-sn 3741 . . . . . 6 {} = {m m = }
3 elun 3220 . . . . . . . . . 10 (m ((k <fink {n}) ∪ {n}) ↔ (m (k <fink {n}) m {n}))
4 vex 2862 . . . . . . . . . . . . . 14 m V
54elimak 4259 . . . . . . . . . . . . 13 (m (k <fink {n}) ↔ t {n}⟪t, m k <fin )
6 vex 2862 . . . . . . . . . . . . . 14 n V
7 opkeq1 4059 . . . . . . . . . . . . . . 15 (t = n → ⟪t, m⟫ = ⟪n, m⟫)
87eleq1d 2419 . . . . . . . . . . . . . 14 (t = n → (⟪t, m k <fin ↔ ⟪n, m k <fin ))
96, 8rexsn 3768 . . . . . . . . . . . . 13 (t {n}⟪t, m k <fin ↔ ⟪n, m k <fin )
105, 9bitri 240 . . . . . . . . . . . 12 (m (k <fink {n}) ↔ ⟪n, m k <fin )
116, 4opkelcnvk 4250 . . . . . . . . . . . 12 (⟪n, m k <fin ↔ ⟪m, n <fin )
1210, 11bitri 240 . . . . . . . . . . 11 (m (k <fink {n}) ↔ ⟪m, n <fin )
134elsnc 3756 . . . . . . . . . . 11 (m {n} ↔ m = n)
1412, 13orbi12i 507 . . . . . . . . . 10 ((m (k <fink {n}) m {n}) ↔ (⟪m, n <fin m = n))
153, 14bitri 240 . . . . . . . . 9 (m ((k <fink {n}) ∪ {n}) ↔ (⟪m, n <fin m = n))
164elimak 4259 . . . . . . . . . 10 (m ( <fink {n}) ↔ t {n}⟪t, m <fin )
177eleq1d 2419 . . . . . . . . . . 11 (t = n → (⟪t, m <fin ↔ ⟪n, m <fin ))
186, 17rexsn 3768 . . . . . . . . . 10 (t {n}⟪t, m <fin ↔ ⟪n, m <fin )
1916, 18bitri 240 . . . . . . . . 9 (m ( <fink {n}) ↔ ⟪n, m <fin )
2015, 19orbi12i 507 . . . . . . . 8 ((m ((k <fink {n}) ∪ {n}) m ( <fink {n})) ↔ ((⟪m, n <fin m = n) n, m <fin ))
21 elun 3220 . . . . . . . 8 (m (((k <fink {n}) ∪ {n}) ∪ ( <fink {n})) ↔ (m ((k <fink {n}) ∪ {n}) m ( <fink {n})))
22 df-3or 935 . . . . . . . 8 ((⟪m, n <fin m = n n, m <fin ) ↔ ((⟪m, n <fin m = n) n, m <fin ))
2320, 21, 223bitr4i 268 . . . . . . 7 (m (((k <fink {n}) ∪ {n}) ∪ ( <fink {n})) ↔ (⟪m, n <fin m = n n, m <fin ))
2423abbi2i 2464 . . . . . 6 (((k <fink {n}) ∪ {n}) ∪ ( <fink {n})) = {m (⟪m, n <fin m = n n, m <fin )}
252, 24uneq12i 3416 . . . . 5 ({} ∪ (((k <fink {n}) ∪ {n}) ∪ ( <fink {n}))) = ({m m = } ∪ {m (⟪m, n <fin m = n n, m <fin )})
26 unab 3521 . . . . 5 ({m m = } ∪ {m (⟪m, n <fin m = n n, m <fin )}) = {m (m = (⟪m, n <fin m = n n, m <fin ))}
2725, 26eqtri 2373 . . . 4 ({} ∪ (((k <fink {n}) ∪ {n}) ∪ ( <fink {n}))) = {m (m = (⟪m, n <fin m = n n, m <fin ))}
2827uneq2i 3415 . . 3 ({m ¬ n Nn } ∪ ({} ∪ (((k <fink {n}) ∪ {n}) ∪ ( <fink {n})))) = ({m ¬ n Nn } ∪ {m (m = (⟪m, n <fin m = n n, m <fin ))})
29 imor 401 . . . . 5 ((n Nn → (m → (⟪m, n <fin m = n n, m <fin ))) ↔ (¬ n Nn (m → (⟪m, n <fin m = n n, m <fin ))))
30 df-ne 2518 . . . . . . . 8 (m ↔ ¬ m = )
3130imbi1i 315 . . . . . . 7 ((m → (⟪m, n <fin m = n n, m <fin )) ↔ (¬ m = → (⟪m, n <fin m = n n, m <fin )))
32 df-or 359 . . . . . . 7 ((m = (⟪m, n <fin m = n n, m <fin )) ↔ (¬ m = → (⟪m, n <fin m = n n, m <fin )))
3331, 32bitr4i 243 . . . . . 6 ((m → (⟪m, n <fin m = n n, m <fin )) ↔ (m = (⟪m, n <fin m = n n, m <fin )))
3433orbi2i 505 . . . . 5 ((¬ n Nn (m → (⟪m, n <fin m = n n, m <fin ))) ↔ (¬ n Nn (m = (⟪m, n <fin m = n n, m <fin ))))
3529, 34bitri 240 . . . 4 ((n Nn → (m → (⟪m, n <fin m = n n, m <fin ))) ↔ (¬ n Nn (m = (⟪m, n <fin m = n n, m <fin ))))
3635abbii 2465 . . 3 {m (n Nn → (m → (⟪m, n <fin m = n n, m <fin )))} = {m n Nn (m = (⟪m, n <fin m = n n, m <fin )))}
371, 28, 363eqtr4i 2383 . 2 ({m ¬ n Nn } ∪ ({} ∪ (((k <fink {n}) ∪ {n}) ∪ ( <fink {n})))) = {m (n Nn → (m → (⟪m, n <fin m = n n, m <fin )))}
38 abexv 4324 . . 3 {m ¬ n Nn } V
39 snex 4111 . . . 4 {} V
40 ltfinex 4464 . . . . . . . 8 <fin V
4140cnvkex 4287 . . . . . . 7 k <fin V
42 snex 4111 . . . . . . 7 {n} V
4341, 42imakex 4300 . . . . . 6 (k <fink {n}) V
4443, 42unex 4106 . . . . 5 ((k <fink {n}) ∪ {n}) V
4540, 42imakex 4300 . . . . 5 ( <fink {n}) V
4644, 45unex 4106 . . . 4 (((k <fink {n}) ∪ {n}) ∪ ( <fink {n})) V
4739, 46unex 4106 . . 3 ({} ∪ (((k <fink {n}) ∪ {n}) ∪ ( <fink {n}))) V
4838, 47unex 4106 . 2 ({m ¬ n Nn } ∪ ({} ∪ (((k <fink {n}) ∪ {n}) ∪ ( <fink {n})))) V
4937, 48eqeltrri 2424 1 {m (n Nn → (m → (⟪m, n <fin m = n n, m <fin )))} V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   w3o 933   = wceq 1642   wcel 1710  {cab 2339  wne 2516  wrex 2615  Vcvv 2859  cun 3207  c0 3550  {csn 3737  copk 4057  kccnvk 4175  k cimak 4179   Nn cnnc 4373   <fin cltfin 4433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-addc 4378  df-nnc 4379  df-ltfin 4441
This theorem is referenced by:  ltfintri  4466
  Copyright terms: Public domain W3C validator