HomeHome New Foundations Explorer
Theorem List (p. 11 of 64)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 1001-1100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsimprl2 1001 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ χ) θ)) → ψ)
 
Theoremsimprl3 1002 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ χ) θ)) → χ)
 
Theoremsimprr1 1003 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (θ (φ ψ χ))) → φ)
 
Theoremsimprr2 1004 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (θ (φ ψ χ))) → ψ)
 
Theoremsimprr3 1005 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (θ (φ ψ χ))) → χ)
 
Theoremsimpl1l 1006 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ) χ θ) τ) → φ)
 
Theoremsimpl1r 1007 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ) χ θ) τ) → ψ)
 
Theoremsimpl2l 1008 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ (φ ψ) θ) τ) → φ)
 
Theoremsimpl2r 1009 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ (φ ψ) θ) τ) → ψ)
 
Theoremsimpl3l 1010 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ θ (φ ψ)) τ) → φ)
 
Theoremsimpl3r 1011 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ θ (φ ψ)) τ) → ψ)
 
Theoremsimpr1l 1012 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ) χ θ)) → φ)
 
Theoremsimpr1r 1013 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ) χ θ)) → ψ)
 
Theoremsimpr2l 1014 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ (φ ψ) θ)) → φ)
 
Theoremsimpr2r 1015 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ (φ ψ) θ)) → ψ)
 
Theoremsimpr3l 1016 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ θ (φ ψ))) → φ)
 
Theoremsimpr3r 1017 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ θ (φ ψ))) → ψ)
 
Theoremsimp1ll 1018 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ) χ) θ τ) → φ)
 
Theoremsimp1lr 1019 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ) χ) θ τ) → ψ)
 
Theoremsimp1rl 1020 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ (φ ψ)) θ τ) → φ)
 
Theoremsimp1rr 1021 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ (φ ψ)) θ τ) → ψ)
 
Theoremsimp2ll 1022 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ ((φ ψ) χ) τ) → φ)
 
Theoremsimp2lr 1023 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ ((φ ψ) χ) τ) → ψ)
 
Theoremsimp2rl 1024 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ (χ (φ ψ)) τ) → φ)
 
Theoremsimp2rr 1025 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ (χ (φ ψ)) τ) → ψ)
 
Theoremsimp3ll 1026 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ τ ((φ ψ) χ)) → φ)
 
Theoremsimp3lr 1027 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ τ ((φ ψ) χ)) → ψ)
 
Theoremsimp3rl 1028 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ τ (χ (φ ψ))) → φ)
 
Theoremsimp3rr 1029 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((θ τ (χ (φ ψ))) → ψ)
 
Theoremsimpl11 1030 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ τ) η) → φ)
 
Theoremsimpl12 1031 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ τ) η) → ψ)
 
Theoremsimpl13 1032 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ τ) η) → χ)
 
Theoremsimpl21 1033 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ) τ) η) → φ)
 
Theoremsimpl22 1034 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ) τ) η) → ψ)
 
Theoremsimpl23 1035 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ) τ) η) → χ)
 
Theoremsimpl31 1036 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ τ (φ ψ χ)) η) → φ)
 
Theoremsimpl32 1037 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ τ (φ ψ χ)) η) → ψ)
 
Theoremsimpl33 1038 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ τ (φ ψ χ)) η) → χ)
 
Theoremsimpr11 1039 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ((φ ψ χ) θ τ)) → φ)
 
Theoremsimpr12 1040 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ((φ ψ χ) θ τ)) → ψ)
 
Theoremsimpr13 1041 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ((φ ψ χ) θ τ)) → χ)
 
Theoremsimpr21 1042 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ (φ ψ χ) τ)) → φ)
 
Theoremsimpr22 1043 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ (φ ψ χ) τ)) → ψ)
 
Theoremsimpr23 1044 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ (φ ψ χ) τ)) → χ)
 
Theoremsimpr31 1045 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ τ (φ ψ χ))) → φ)
 
Theoremsimpr32 1046 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ τ (φ ψ χ))) → ψ)
 
Theoremsimpr33 1047 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ τ (φ ψ χ))) → χ)
 
Theoremsimp1l1 1048 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ) τ η) → φ)
 
Theoremsimp1l2 1049 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ) τ η) → ψ)
 
Theoremsimp1l3 1050 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ) τ η) → χ)
 
Theoremsimp1r1 1051 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ)) τ η) → φ)
 
Theoremsimp1r2 1052 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ)) τ η) → ψ)
 
Theoremsimp1r3 1053 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ)) τ η) → χ)
 
Theoremsimp2l1 1054 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ χ) θ) η) → φ)
 
Theoremsimp2l2 1055 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ χ) θ) η) → ψ)
 
Theoremsimp2l3 1056 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ χ) θ) η) → χ)
 
Theoremsimp2r1 1057 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (θ (φ ψ χ)) η) → φ)
 
Theoremsimp2r2 1058 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (θ (φ ψ χ)) η) → ψ)
 
Theoremsimp2r3 1059 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (θ (φ ψ χ)) η) → χ)
 
Theoremsimp3l1 1060 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η ((φ ψ χ) θ)) → φ)
 
Theoremsimp3l2 1061 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η ((φ ψ χ) θ)) → ψ)
 
Theoremsimp3l3 1062 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η ((φ ψ χ) θ)) → χ)
 
Theoremsimp3r1 1063 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η (θ (φ ψ χ))) → φ)
 
Theoremsimp3r2 1064 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η (θ (φ ψ χ))) → ψ)
 
Theoremsimp3r3 1065 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η (θ (φ ψ χ))) → χ)
 
Theoremsimp11l 1066 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ) χ θ) τ η) → φ)
 
Theoremsimp11r 1067 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ) χ θ) τ η) → ψ)
 
Theoremsimp12l 1068 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ (φ ψ) θ) τ η) → φ)
 
Theoremsimp12r 1069 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ (φ ψ) θ) τ η) → ψ)
 
Theoremsimp13l 1070 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ θ (φ ψ)) τ η) → φ)
 
Theoremsimp13r 1071 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((χ θ (φ ψ)) τ η) → ψ)
 
Theoremsimp21l 1072 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ) χ θ) η) → φ)
 
Theoremsimp21r 1073 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ ((φ ψ) χ θ) η) → ψ)
 
Theoremsimp22l 1074 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ (φ ψ) θ) η) → φ)
 
Theoremsimp22r 1075 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ (φ ψ) θ) η) → ψ)
 
Theoremsimp23l 1076 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ θ (φ ψ)) η) → φ)
 
Theoremsimp23r 1077 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ (χ θ (φ ψ)) η) → ψ)
 
Theoremsimp31l 1078 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η ((φ ψ) χ θ)) → φ)
 
Theoremsimp31r 1079 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η ((φ ψ) χ θ)) → ψ)
 
Theoremsimp32l 1080 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η (χ (φ ψ) θ)) → φ)
 
Theoremsimp32r 1081 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η (χ (φ ψ) θ)) → ψ)
 
Theoremsimp33l 1082 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η (χ θ (φ ψ))) → φ)
 
Theoremsimp33r 1083 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((τ η (χ θ (φ ψ))) → ψ)
 
Theoremsimp111 1084 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ τ) η ζ) → φ)
 
Theoremsimp112 1085 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ τ) η ζ) → ψ)
 
Theoremsimp113 1086 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((((φ ψ χ) θ τ) η ζ) → χ)
 
Theoremsimp121 1087 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ) τ) η ζ) → φ)
 
Theoremsimp122 1088 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ) τ) η ζ) → ψ)
 
Theoremsimp123 1089 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ (φ ψ χ) τ) η ζ) → χ)
 
Theoremsimp131 1090 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ τ (φ ψ χ)) η ζ) → φ)
 
Theoremsimp132 1091 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ τ (φ ψ χ)) η ζ) → ψ)
 
Theoremsimp133 1092 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
(((θ τ (φ ψ χ)) η ζ) → χ)
 
Theoremsimp211 1093 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ((φ ψ χ) θ τ) ζ) → φ)
 
Theoremsimp212 1094 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ((φ ψ χ) θ τ) ζ) → ψ)
 
Theoremsimp213 1095 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η ((φ ψ χ) θ τ) ζ) → χ)
 
Theoremsimp221 1096 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ (φ ψ χ) τ) ζ) → φ)
 
Theoremsimp222 1097 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ (φ ψ χ) τ) ζ) → ψ)
 
Theoremsimp223 1098 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ (φ ψ χ) τ) ζ) → χ)
 
Theoremsimp231 1099 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ τ (φ ψ χ)) ζ) → φ)
 
Theoremsimp232 1100 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
((η (θ τ (φ ψ χ)) ζ) → ψ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6336
  Copyright terms: Public domain < Previous  Next >