 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpteq2dva GIF version

Theorem mpteq2dva 5667
 Description: Slightly more general equality inference for the maps to notation. (Contributed by Scott Fenton, 25-Apr-2012.)
Hypothesis
Ref Expression
mpteq2dva.1 ((φ x A) → B = C)
Assertion
Ref Expression
mpteq2dva (φ → (x A B) = (x A C))
Distinct variable group:   φ,x
Allowed substitution hints:   A(x)   B(x)   C(x)

Proof of Theorem mpteq2dva
StepHypRef Expression
1 nfv 1619 . 2 xφ
2 mpteq2dva.1 . 2 ((φ x A) → B = C)
31, 2mpteq2da 5666 1 (φ → (x A B) = (x A C))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 358   = wceq 1642   ∈ wcel 1710   ↦ cmpt 5651 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-ral 2619  df-opab 4623  df-mpt 5652 This theorem is referenced by:  mpteq2dv  5668
 Copyright terms: Public domain W3C validator