New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ncdisjeq GIF version

Theorem ncdisjeq 6148
 Description: Two cardinals are either disjoint or equal. (Contributed by SF, 25-Feb-2015.)
Assertion
Ref Expression
ncdisjeq ((A NC B NC ) → ((AB) = A = B))

Proof of Theorem ncdisjeq
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elncs 6119 . . . 4 (A NCx A = Nc x)
2 elncs 6119 . . . 4 (B NCy B = Nc y)
31, 2anbi12i 678 . . 3 ((A NC B NC ) ↔ (x A = Nc x y B = Nc y))
4 eeanv 1913 . . 3 (xy(A = Nc x B = Nc y) ↔ (x A = Nc x y B = Nc y))
53, 4bitr4i 243 . 2 ((A NC B NC ) ↔ xy(A = Nc x B = Nc y))
6 ener 6039 . . . . . 6 Er V
7 erdisj 5972 . . . . . 6 ( ≈ Er V → ([x] ≈ = [y] ≈ ([x] ≈ ∩ [y] ≈ ) = ))
86, 7ax-mp 8 . . . . 5 ([x] ≈ = [y] ≈ ([x] ≈ ∩ [y] ≈ ) = )
9 df-nc 6101 . . . . . . 7 Nc x = [x] ≈
10 eqtr 2370 . . . . . . 7 ((A = Nc x Nc x = [x] ≈ ) → A = [x] ≈ )
119, 10mpan2 652 . . . . . 6 (A = Nc xA = [x] ≈ )
12 df-nc 6101 . . . . . . 7 Nc y = [y] ≈
13 eqtr 2370 . . . . . . 7 ((B = Nc y Nc y = [y] ≈ ) → B = [y] ≈ )
1412, 13mpan2 652 . . . . . 6 (B = Nc yB = [y] ≈ )
15 eqeq12 2365 . . . . . . 7 ((A = [x] ≈ B = [y] ≈ ) → (A = B ↔ [x] ≈ = [y] ≈ ))
16 ineq12 3452 . . . . . . . 8 ((A = [x] ≈ B = [y] ≈ ) → (AB) = ([x] ≈ ∩ [y] ≈ ))
1716eqeq1d 2361 . . . . . . 7 ((A = [x] ≈ B = [y] ≈ ) → ((AB) = ↔ ([x] ≈ ∩ [y] ≈ ) = ))
1815, 17orbi12d 690 . . . . . 6 ((A = [x] ≈ B = [y] ≈ ) → ((A = B (AB) = ) ↔ ([x] ≈ = [y] ≈ ([x] ≈ ∩ [y] ≈ ) = )))
1911, 14, 18syl2an 463 . . . . 5 ((A = Nc x B = Nc y) → ((A = B (AB) = ) ↔ ([x] ≈ = [y] ≈ ([x] ≈ ∩ [y] ≈ ) = )))
208, 19mpbiri 224 . . . 4 ((A = Nc x B = Nc y) → (A = B (AB) = ))
2120orcomd 377 . . 3 ((A = Nc x B = Nc y) → ((AB) = A = B))
2221exlimivv 1635 . 2 (xy(A = Nc x B = Nc y) → ((AB) = A = B))
235, 22sylbi 187 1 ((A NC B NC ) → ((AB) = A = B))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∨ wo 357   ∧ wa 358  ∃wex 1541   = wceq 1642   ∈ wcel 1710  Vcvv 2859   ∩ cin 3208  ∅c0 3550   class class class wbr 4639   Er cer 5898  [cec 5945   ≈ cen 6028   NC cncs 6088   Nc cnc 6091 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-2nd 4797  df-txp 5736  df-ins2 5750  df-ins3 5752  df-image 5754  df-ins4 5756  df-si3 5758  df-funs 5760  df-fns 5762  df-trans 5899  df-sym 5908  df-er 5909  df-ec 5947  df-qs 5951  df-en 6029  df-ncs 6098  df-nc 6101 This theorem is referenced by:  nceleq  6149
 Copyright terms: Public domain W3C validator