NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nceqi GIF version

Theorem nceqi 6109
Description: Equality inference for cardinality. (Contributed by SF, 24-Feb-2015.)
Hypothesis
Ref Expression
nceqi.1 A = B
Assertion
Ref Expression
nceqi Nc A = Nc B

Proof of Theorem nceqi
StepHypRef Expression
1 nceqi.1 . 2 A = B
2 nceq 6108 . 2 (A = BNc A = Nc B)
31, 2ax-mp 8 1 Nc A = Nc B
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   Nc cnc 6091
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rex 2620  df-sn 3741  df-ima 4727  df-ec 5947  df-nc 6101
This theorem is referenced by:  muc0  6142  ncpw1c  6154  1p1e2c  6155  2p1e3c  6156  ce0  6190  ce2nc1  6193  tcncv  6226  addcdi  6250  nchoicelem19  6307  vncan  6337
  Copyright terms: Public domain W3C validator