NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nchoicelem18 GIF version

Theorem nchoicelem18 6306
Description: Lemma for nchoice 6308. Set up stratification for nchoicelem19 6307. (Contributed by SF, 20-Mar-2015.)
Assertion
Ref Expression
nchoicelem18 {x ( Spacx) Fin } V

Proof of Theorem nchoicelem18
Dummy variables c p q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 406 . . . 4 x NC x NC )
2 fnspac 6283 . . . . . . . . . . 11 Spac Fn NC
3 fndm 5182 . . . . . . . . . . 11 ( Spac Fn NC → dom Spac = NC )
42, 3ax-mp 5 . . . . . . . . . 10 dom Spac = NC
54eleq2i 2417 . . . . . . . . 9 (x dom Spacx NC )
6 ndmfv 5349 . . . . . . . . 9 x dom Spac → ( Spacx) = )
75, 6sylnbir 298 . . . . . . . 8 x NC → ( Spacx) = )
8 0fin 4423 . . . . . . . 8 Fin
97, 8syl6eqel 2441 . . . . . . 7 x NC → ( Spacx) Fin )
109pm4.71i 613 . . . . . 6 x NC ↔ (¬ x NC ( Spacx) Fin ))
1110orbi1i 506 . . . . 5 ((¬ x NC (x NC ( Spacx) Fin )) ↔ ((¬ x NC ( Spacx) Fin ) (x NC ( Spacx) Fin )))
12 elun 3220 . . . . . 6 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ (x NC x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))))
13 vex 2862 . . . . . . . 8 x V
1413elcompl 3225 . . . . . . 7 (x NC ↔ ¬ x NC )
15 elin 3219 . . . . . . . 8 (x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) ↔ (x NC x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )))
16 spacval 6282 . . . . . . . . . . 11 (x NC → ( Spacx) = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
1716eleq1d 2419 . . . . . . . . . 10 (x NC → (( Spacx) Fin Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Fin ))
1813eluni1 4173 . . . . . . . . . . 11 (x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ {x} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))
19 df-br 4640 . . . . . . . . . . . . . 14 (c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x} ↔ c, {x} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c))
20 spacvallem1 6281 . . . . . . . . . . . . . . 15 {p, q (p NC q NC q = (2cc p))} V
21 snex 4111 . . . . . . . . . . . . . . 15 {x} V
2220, 21nchoicelem10 6298 . . . . . . . . . . . . . 14 (c, {x} ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) ↔ c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
2319, 22bitri 240 . . . . . . . . . . . . 13 (c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x} ↔ c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
2423rexbii 2639 . . . . . . . . . . . 12 (c Fin c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x} ↔ c Fin c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
25 elima 4754 . . . . . . . . . . . 12 ({x} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ c Fin c ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c){x})
26 risset 2661 . . . . . . . . . . . 12 ( Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Finc Fin c = Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}))
2724, 25, 263bitr4i 268 . . . . . . . . . . 11 ({x} ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Fin )
2818, 27bitri 240 . . . . . . . . . 10 (x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ Clos1 ({x}, {p, q (p NC q NC q = (2cc p))}) Fin )
2917, 28syl6rbbr 255 . . . . . . . . 9 (x NC → (x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) ↔ ( Spacx) Fin ))
3029pm5.32i 618 . . . . . . . 8 ((x NC x 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) ↔ (x NC ( Spacx) Fin ))
3115, 30bitri 240 . . . . . . 7 (x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) ↔ (x NC ( Spacx) Fin ))
3214, 31orbi12i 507 . . . . . 6 ((x NC x ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ (¬ x NC (x NC ( Spacx) Fin )))
3312, 32bitri 240 . . . . 5 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ (¬ x NC (x NC ( Spacx) Fin )))
34 andir 838 . . . . 5 (((¬ x NC x NC ) ( Spacx) Fin ) ↔ ((¬ x NC ( Spacx) Fin ) (x NC ( Spacx) Fin )))
3511, 33, 343bitr4i 268 . . . 4 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ ((¬ x NC x NC ) ( Spacx) Fin ))
361, 35mpbiran 884 . . 3 (x ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) ↔ ( Spacx) Fin )
3736abbi2i 2464 . 2 ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) = {x ( Spacx) Fin }
38 ncsex 6111 . . . 4 NC V
3938complex 4104 . . 3 NC V
40 ssetex 4744 . . . . . . . . . 10 S V
4140ins3ex 5798 . . . . . . . . 9 Ins3 S V
4240complex 4104 . . . . . . . . . . . . . 14 S V
4342cnvex 5102 . . . . . . . . . . . . 13 S V
4440cnvex 5102 . . . . . . . . . . . . . 14 S V
4520imageex 5801 . . . . . . . . . . . . . . . 16 Image{p, q (p NC q NC q = (2cc p))} V
4640, 45coex 4750 . . . . . . . . . . . . . . 15 ( S Image{p, q (p NC q NC q = (2cc p))}) V
4746fixex 5789 . . . . . . . . . . . . . 14 Fix ( S Image{p, q (p NC q NC q = (2cc p))}) V
4844, 47resex 5117 . . . . . . . . . . . . 13 ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})) V
4943, 48txpex 5785 . . . . . . . . . . . 12 ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5049rnex 5107 . . . . . . . . . . 11 ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5150complex 4104 . . . . . . . . . 10 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5251ins2ex 5797 . . . . . . . . 9 Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))}))) V
5341, 52symdifex 4108 . . . . . . . 8 ( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) V
54 1cex 4142 . . . . . . . 8 1c V
5553, 54imaex 4747 . . . . . . 7 (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) V
5655complex 4104 . . . . . 6 ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) V
57 finex 4397 . . . . . 6 Fin V
5856, 57imaex 4747 . . . . 5 ( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) V
5958uni1ex 4293 . . . 4 1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ) V
6038, 59inex 4105 . . 3 ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin )) V
6139, 60unex 4106 . 2 ( ∼ NC ∪ ( NC ∩ ⋃1( ∼ (( Ins3 S Ins2 ∼ ran ( S ⊗ ( S Fix ( S Image{p, q (p NC q NC q = (2cc p))})))) “ 1c) “ Fin ))) V
6237, 61eqeltrri 2424 1 {x ( Spacx) Fin } V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357   wa 358   w3a 934   = wceq 1642   wcel 1710  {cab 2339  wrex 2615  Vcvv 2859  ccompl 3205  cun 3207  cin 3208  csymdif 3209  c0 3550  {csn 3737  1cuni1 4133  1cc1c 4134   Fin cfin 4376  cop 4561  {copab 4622   class class class wbr 4639   S csset 4719   ccom 4721  cima 4722  ccnv 4771  dom cdm 4772  ran crn 4773   cres 4774   Fn wfn 4776  cfv 4781  (class class class)co 5525  ctxp 5735   Fix cfix 5739   Ins2 cins2 5749   Ins3 cins3 5751  Imagecimage 5753   Clos1 cclos1 5872   NC cncs 6088  2cc2c 6094  c cce 6096   Spac cspac 6273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-swap 4724  df-sset 4725  df-co 4726  df-ima 4727  df-si 4728  df-id 4767  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788  df-fun 4789  df-fn 4790  df-f 4791  df-f1 4792  df-fo 4793  df-f1o 4794  df-fv 4795  df-2nd 4797  df-ov 5526  df-oprab 5528  df-mpt 5652  df-mpt2 5654  df-txp 5736  df-fix 5740  df-ins2 5750  df-ins3 5752  df-image 5754  df-ins4 5756  df-si3 5758  df-funs 5760  df-fns 5762  df-pw1fn 5766  df-fullfun 5768  df-clos1 5873  df-trans 5899  df-sym 5908  df-er 5909  df-ec 5947  df-qs 5951  df-map 6001  df-en 6029  df-ncs 6098  df-nc 6101  df-2c 6104  df-ce 6106  df-spac 6274
This theorem is referenced by:  nchoicelem19  6307
  Copyright terms: Public domain W3C validator