New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  neldifsn GIF version

Theorem neldifsn 3841
 Description: A is not in (B ∖ {A}). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn ¬ A (B {A})

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2521 . 2 ¬ AA
2 eldifsni 3840 . 2 (A (B {A}) → AA)
31, 2mto 167 1 ¬ A (B {A})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∈ wcel 1710   ≠ wne 2516   ∖ cdif 3206  {csn 3737 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215  df-sn 3741 This theorem is referenced by:  neldifsnd  3842  phiall  4618
 Copyright terms: Public domain W3C validator