New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfcompl GIF version

Theorem nfcompl 3229
 Description: Hypothesis builder for complement. (Contributed by SF, 2-Jan-2018.)
Hypothesis
Ref Expression
nfbool.1 xA
Assertion
Ref Expression
nfcompl xA

Proof of Theorem nfcompl
StepHypRef Expression
1 df-compl 3212 . 2 A = (AA)
2 nfbool.1 . . 3 xA
32, 2nfnin 3228 . 2 x(AA)
41, 3nfcxfr 2486 1 xA
 Colors of variables: wff setvar class Syntax hints:  Ⅎwnfc 2476   ⩃ cnin 3204   ∼ ccompl 3205 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-nin 3211  df-compl 3212 This theorem is referenced by:  nfin  3230  nfun  3231  nfdif  3232
 Copyright terms: Public domain W3C validator