New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfopd GIF version

Theorem nfopd 4605
 Description: Deduction version of bound-variable hypothesis builder nfop 4604. (Contributed by SF, 2-Jan-2015.)
Hypotheses
Ref Expression
nfopd.1 (φxA)
nfopd.2 (φxB)
Assertion
Ref Expression
nfopd (φxA, B)

Proof of Theorem nfopd
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2494 . . 3 x{z x z A}
2 nfaba1 2494 . . 3 x{z x z B}
31, 2nfop 4604 . 2 x{z x z A}, {z x z B}
4 nfopd.1 . . 3 (φxA)
5 nfopd.2 . . 3 (φxB)
6 nfnfc1 2492 . . . . 5 xxA
7 nfnfc1 2492 . . . . 5 xxB
86, 7nfan 1824 . . . 4 x(xA xB)
9 abidnf 3005 . . . . . 6 (xA → {z x z A} = A)
109adantr 451 . . . . 5 ((xA xB) → {z x z A} = A)
11 abidnf 3005 . . . . . 6 (xB → {z x z B} = B)
1211adantl 452 . . . . 5 ((xA xB) → {z x z B} = B)
1310, 12opeq12d 4586 . . . 4 ((xA xB) → {z x z A}, {z x z B} = A, B)
148, 13nfceqdf 2488 . . 3 ((xA xB) → (x{z x z A}, {z x z B}xA, B))
154, 5, 14syl2anc 642 . 2 (φ → (x{z x z A}, {z x z B}xA, B))
163, 15mpbii 202 1 (φxA, B)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358  ∀wal 1540   = wceq 1642   ∈ wcel 1710  {cab 2339  Ⅎwnfc 2476  ⟨cop 4561 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-addc 4378  df-nnc 4379  df-phi 4565  df-op 4566 This theorem is referenced by:  nfbrd  4682  dfid3  4768  nfovd  5544
 Copyright terms: Public domain W3C validator