New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfrmod GIF version

Theorem nfrmod 2784
 Description: Deduction version of nfrmo 2786. (Contributed by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
nfreud.1 yφ
nfreud.2 (φxA)
nfreud.3 (φ → Ⅎxψ)
Assertion
Ref Expression
nfrmod (φ → Ⅎx∃*y A ψ)

Proof of Theorem nfrmod
StepHypRef Expression
1 df-rmo 2622 . 2 (∃*y A ψ∃*y(y A ψ))
2 nfreud.1 . . 3 yφ
3 nfcvf 2511 . . . . . 6 x x = yxy)
43adantl 452 . . . . 5 ((φ ¬ x x = y) → xy)
5 nfreud.2 . . . . . 6 (φxA)
65adantr 451 . . . . 5 ((φ ¬ x x = y) → xA)
74, 6nfeld 2504 . . . 4 ((φ ¬ x x = y) → Ⅎx y A)
8 nfreud.3 . . . . 5 (φ → Ⅎxψ)
98adantr 451 . . . 4 ((φ ¬ x x = y) → Ⅎxψ)
107, 9nfand 1822 . . 3 ((φ ¬ x x = y) → Ⅎx(y A ψ))
112, 10nfmod2 2217 . 2 (φ → Ⅎx∃*y(y A ψ))
121, 11nfxfrd 1571 1 (φ → Ⅎx∃*y A ψ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 358  ∀wal 1540  Ⅎwnf 1544   ∈ wcel 1710  ∃*wmo 2205  Ⅎwnfc 2476  ∃*wrmo 2617 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rmo 2622 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator