New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  op1st2nd GIF version

Theorem op1st2nd 5790
 Description: Express equality to an ordered pair via 1st and 2nd. (Contributed by SF, 12-Feb-2015.)
Hypotheses
Ref Expression
op1st2nd.1 A V
op1st2nd.2 B V
Assertion
Ref Expression
op1st2nd ((C1st A C2nd B) ↔ C = A, B)

Proof of Theorem op1st2nd
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 op1st2nd.1 . . . . 5 A V
21br1st 4858 . . . 4 (C1st Ax C = A, x)
3 vex 2862 . . . . . . . . 9 x V
41, 3opbr2nd 5502 . . . . . . . 8 (A, x2nd Bx = B)
54biimpi 186 . . . . . . 7 (A, x2nd Bx = B)
65opeq2d 4585 . . . . . 6 (A, x2nd BA, x = A, B)
7 breq1 4642 . . . . . . 7 (C = A, x → (C2nd BA, x2nd B))
8 eqeq1 2359 . . . . . . 7 (C = A, x → (C = A, BA, x = A, B))
97, 8imbi12d 311 . . . . . 6 (C = A, x → ((C2nd BC = A, B) ↔ (A, x2nd BA, x = A, B)))
106, 9mpbiri 224 . . . . 5 (C = A, x → (C2nd BC = A, B))
1110exlimiv 1634 . . . 4 (x C = A, x → (C2nd BC = A, B))
122, 11sylbi 187 . . 3 (C1st A → (C2nd BC = A, B))
1312imp 418 . 2 ((C1st A C2nd B) → C = A, B)
14 eqid 2353 . . . . 5 A = A
15 op1st2nd.2 . . . . . 6 B V
161, 15opbr1st 5501 . . . . 5 (A, B1st AA = A)
1714, 16mpbir 200 . . . 4 A, B1st A
18 eqid 2353 . . . . 5 B = B
191, 15opbr2nd 5502 . . . . 5 (A, B2nd BB = B)
2018, 19mpbir 200 . . . 4 A, B2nd B
2117, 20pm3.2i 441 . . 3 (A, B1st A A, B2nd B)
22 breq1 4642 . . . 4 (C = A, B → (C1st AA, B1st A))
23 breq1 4642 . . . 4 (C = A, B → (C2nd BA, B2nd B))
2422, 23anbi12d 691 . . 3 (C = A, B → ((C1st A C2nd B) ↔ (A, B1st A A, B2nd B)))
2521, 24mpbiri 224 . 2 (C = A, B → (C1st A C2nd B))
2613, 25impbii 180 1 ((C1st A C2nd B) ↔ C = A, B)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   ∧ wa 358  ∃wex 1541   = wceq 1642   ∈ wcel 1710  Vcvv 2859  ⟨cop 4561   class class class wbr 4639  1st c1st 4717  2nd c2nd 4783 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-2nd 4797 This theorem is referenced by:  otsnelsi3  5805  composeex  5820  addcfnex  5824  funsex  5828  crossex  5850  transex  5910  refex  5911  antisymex  5912  enpw1lem1  6061  enmap2lem1  6063  enmap1lem1  6069  enprmaplem1  6076  ovmuc  6130  ce0nn  6180  nncdiv3lem1  6275  nncdiv3lem2  6276  nnc3n3p1  6278  spacvallem1  6281  nchoicelem16  6304
 Copyright terms: Public domain W3C validator