 New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkeq12i GIF version

Theorem opkeq12i 4064
 Description: Equality inference for ordered pairs. (The proof was shortened by Eric Schmidt, 4-Apr-2007.) (Contributed by NM, 16-Dec-2006.)
Hypotheses
Ref Expression
opkeq1i.1 A = B
opkeq12i.2 C = D
Assertion
Ref Expression
opkeq12i A, C⟫ = ⟪B, D

Proof of Theorem opkeq12i
StepHypRef Expression
1 opkeq1i.1 . 2 A = B
2 opkeq12i.2 . 2 C = D
3 opkeq12 4061 . 2 ((A = B C = D) → ⟪A, C⟫ = ⟪B, D⟫)
41, 2, 3mp2an 653 1 A, C⟫ = ⟪B, D
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642  ⟪copk 4057 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742  df-opk 4058 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator