New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  preq12i GIF version

Theorem preq12i 3804
 Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1 A = B
preq12i.2 C = D
Assertion
Ref Expression
preq12i {A, C} = {B, D}

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2 A = B
2 preq12i.2 . 2 C = D
3 preq12 3801 . 2 ((A = B C = D) → {A, C} = {B, D})
41, 2, 3mp2an 653 1 {A, C} = {B, D}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1642  {cpr 3738 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator