New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  pssirr GIF version

Theorem pssirr 3369
 Description: Proper subclass is irreflexive. Theorem 7 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.)
Assertion
Ref Expression
pssirr ¬ AA

Proof of Theorem pssirr
StepHypRef Expression
1 pm3.24 852 . 2 ¬ (A A ¬ A A)
2 dfpss3 3355 . 2 (AA ↔ (A A ¬ A A))
31, 2mtbir 290 1 ¬ AA
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 358   ⊆ wss 3257   ⊊ wpss 3258 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259  df-pss 3261 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator